×

Exact solution of the curved Dirac equation in polar coordinates: master function approach. (English) Zbl 1436.81034

The Dirac equation for a charged particle in (2+1) dimensions is studied. Using shape-invariant potentials, it is exactly solved for some particular electromagnetic fields.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81U15 Exactly and quasi-solvable systems arising in quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics

References:

[1] Sukumar, C. V., Supersymmetry and the Dirac equation for a central Coulomb field, Journal of Physics. A. Mathematical and General, 18, 12, L697-L701 (1985) · doi:10.1088/0305-4470/18/12/002
[2] Ikhdair, S. M., Approximate solutions of the Dirac equation for the Rosen-Morse potential including the spin-orbit centrifugal term, Journal of Mathematical Physics, 51, 2 (2010) · Zbl 1309.81076 · doi:10.1063/1.3293759
[3] Hamzavi, M.; Rajabi, A. A., Generalized nuclear Woods-Saxon potential under relativistic spin symmetry limit, ISRN High Energy Physics, 2013 (2013) · Zbl 1362.81030 · doi:10.1155/2013/987632
[4] Hassanabadi, H.; Maghsoodi, E.; Zarrinkamar, S.; Rahimov, H., Dirac equation for generalized Pöschl-Teller scalar and vector potentials and a Coulomb tensor interaction by Nikiforov-Uvarv method, Journal of Mathematical Physics, 53, 2 (2012) · Zbl 1274.81077 · doi:10.1063/1.3683078
[5] Azizi, M.; Salehi, N.; Rajabi, A. A., Exact solution of the Dirac equation for the Yukawa potential with scalar and vector potentials and tensor interaction, ISRN High Energy Physics, 2013 (2013) · Zbl 1362.81028 · doi:10.1155/2013/310392
[6] Moayedi, S. K.; Darabi, F., Exact solutions of Dirac equation on a 2D gravitational background, Physics Letters A, 322, 3-4, 173-178 (2004) · Zbl 1118.81410 · doi:10.1016/j.physleta.2004.01.032
[7] Khorrami, M.; Alimohammadi, M.; Shariati, A., Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field, Annals of Physics, 304, 2, 91-102 (2003) · Zbl 1026.81041 · doi:10.1016/s0003-4916(03)00016-2
[8] Villalba, V. M., Dirac equation in some homogeneous space-times, separation of variables and exact solutions, Modern Physics Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear Physics, 8, 25, 2351-2364 (1993) · Zbl 1020.83582 · doi:10.1142/S0217732393003652
[9] Sucu, Y.; Unal, N., Exact solution of Dirac equation in \(2 + 1\) dimensional gravity, Journal of Mathematical Physics, 48, 5 (2007) · Zbl 1144.81415 · doi:10.1063/1.2735442
[10] Alhaidari, A. D., Solution of the Dirac equation by separation of variables in spherical coordinates for a large class of non-central electromagnetic potentials, Annals of Physics, 320, 2, 453-467 (2005) · Zbl 1086.81030 · doi:10.1016/j.aop.2005.07.001
[11] Villalba, V. M.; Catalá, E. I., Separation of variables and exact solution of the Klein-Gordon and Dirac equations in an open universe, Journal of Mathematical Physics, 43, 10, article 4909 (2002) · Zbl 1060.81051 · doi:10.1063/1.1501445
[12] Zou, X.; Yi, L.-Z.; Jia, C.-S., Bound states of the Dirac equation with vector and scalar Eckart potentials, Physics Letters A, 346, 1-3, 54-64 (2005) · Zbl 1195.81065 · doi:10.1016/j.physleta.2005.07.075
[13] Zhao, X.-Q.; Jia, C.-S.; Yang, Q.-B., Bound states of relativistic particles in the generalized symmetrical double-well potential, Physics Letters, Section A: General, Atomic and Solid State Physics, 337, 3, 189-196 (2005) · Zbl 1135.81335 · doi:10.1016/j.physleta.2005.01.062
[14] Egrifes, H.; Sever, R., Bound states of the Dirac equation for the PT-symmetric generalized Hulthén potential by the Nikiforov-Uvarov method, Physics Letters A, 344, 2-4, 117-126 (2005) · Zbl 1194.81064 · doi:10.1016/j.physleta.2005.06.061
[15] Hassanabadi, H.; Maghsoodi, E.; Ikot, A. N.; Zarrinkamar, S., Approximate arbitrary-state solutions of Dirac equation for modified deformed Hylleraas and modified Eckart potentials by the NU method, Applied Mathematics and Computation, 219, 17, 9388-9398 (2013) · Zbl 1290.81026 · doi:10.1016/j.amc.2013.03.011
[16] Witten, E., Dynamical breaking of supersymmetry, Nuclear Physics B, 188, 3, 513-554 (1981) · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[17] Gendenshtein, L., Derivation of exact spectra of the Schrodinger equation by means of supersymmetry, Journal of Experimental and Theoretical Physics Letters, 38, 6, 356-359 (1983) · Zbl 1398.81106
[18] Cooper, F.; Khare, A.; Sukhatme, U., Supersymmetry and quantum mechanics, Physics Reports, 251, 5-6, 267-385 (1995) · doi:10.1016/0370-1573(94)00080-m
[19] Jafarizadeh, M. A.; Fakhri, H., Parasupersymmetry and shape invariance in differential equations of mathematical physics and quantum mechanics, Annals of Physics, 262, 2, 260-276 (1998) · Zbl 0940.81022 · doi:10.1006/aphy.1997.5745
[20] Fakhri, H., Another bunch of superpotentials in terms of a master function, Physics Letters A, 265, 1-2, 20-27 (2000) · Zbl 0941.81053 · doi:10.1016/s0375-9601(99)00873-7
[21] Fakhri, H., Dirac equation for a spin-1/2 charged particle on the 2D sphere \(S^2\) and the hyperbolic plane \(H^2\), Journal of Physics A. Mathematical and General, 35, 30, 6329-6337 (2002) · Zbl 1040.81032 · doi:10.1088/0305-4470/35/30/310
[22] Fakhri, H., Solution of the Dirac equation on the homogeneous manifold \(S L(2, c) / G L(1, c)\) in the presence of a magnetic monopole field, Journal of Physics A: Mathematical and General, 33, 2, 293-305 (2000) · Zbl 0978.81032 · doi:10.1088/0305-4470/33/2/306
[23] Panahi, H.; Jahangiri, L.; Asghari Rad, S., Generalized Jaynes-Cummings model in master function and supersymmetric representations, The European Physical Journal Plus, 129, 6, 113-123 (2014) · doi:10.1140/epjp/i2014-14113-4
[24] Fakhri, H.; Abbasi, N., Exact solution of the Dirac equation for a spin-1/2 charged particle in two-dimensional and three-dimensional Euclidean spaces with shape invariance symmetry, Journal of Mathematical Physics, 42, 6, 2416-2437 (2001) · Zbl 1016.81022
[25] Greiner, W., Relativistic Quantum Mechanics (1981), Berlin, Germany: Springer, Berlin, Germany
[26] Lawrie, I. D., A Unified Grand Tour of Theoretical Physics (2002), Bristol, UK: Institute of Physics Publishing, Bristol, UK · Zbl 0743.53044 · doi:10.1201/noe0750306041
[27] Alhaidari, A. D., Relativistic extension of shape invariant potentials, Journal of Physics A: Mathematical and General, 35, 29, 6207-6216 (2002) · Zbl 1066.81626
[28] Alhaidari, A. D., Solution of the Dirac equation with position-dependent mass in the Coulomb field, Physics Letters A, 322, 1-2, 72-77 (2004) · Zbl 1118.81303 · doi:10.1016/j.physleta.2004.01.006
[29] Panahi, H.; Jahangiri, L., The (2+1) curved Dirac equation in polar coordinates in the presence of electromagnetic field, Annals of Physics, 354, 306-315 (2015) · Zbl 1377.81046 · doi:10.1016/j.aop.2014.12.025
[30] Nakahara, M., Geometry, Topology and Physics (2003), Bristol, UK: Institute of Physics, Bristol, UK · Zbl 1090.53001 · doi:10.1201/9781420056945
[31] Dabrowska, J. W.; Khare, A.; Sukhatme, U. P., Explicit wavefunctions for shape-invariant potentials by operator techniques, Journal of Physics A: Mathematical and General, 21, 4, L195-L200 (1988) · doi:10.1088/0305-4470/21/4/002
[32] Levai, G., A search for shape-invariant solvable potentials, Journal of Physics A: Mathematical and General, 22, 6, 689-702 (1989) · Zbl 0687.35081 · doi:10.1088/0305-4470/22/6/020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.