×

On the frequency of algebraic Brauer classes on certain log \(K3\)- surfaces. (English) Zbl 1436.14045

This paper considers the integral Brauer-Manin obstruction for open subsets of smooth del pezzo surfaces of degree 4, given by the removal of a hyperplane. Let \(A\) and \(B\) be \(5\times 5\) integer matrices, and let \(S_{A,B}\) be the intersection \(\mathbf{x}^tA\mathbf{x}=\mathbf{x}^tB\mathbf{x}=0\). When \(S_{A,B}\) is smooth of codimension 2 one is interested in the open set \(U=S_{A,B}\setminus H\), for hyperplanes \(H\) such that \(S_{A,B}\cap H\) is geometrically irreducible. In this case there can only be an integral Brauer-Manin obstruction when \[ \mathrm{BR}_1(U)/\mathrm{BR}_0(U)\not=0.\tag{*} \]
The idea of the paper is to fix a nonsingular matrix \(A\), and to count the number \(N(P)\) of matrices \(B\) of norm at most \(P\) for which (*) can hold. There are \(O(P^{15})\) possible matrices \(B\), and it is shown that the number for which there can be an integral Brauer-Manin obstruction is at most \(O_{\varepsilon}(P^{14+1/5+\varepsilon})\), for any fixed \(\varepsilon>0\).
To prove the theorem the authors use a result from their earlier work [J. Number Theory 203, 376–427 (2019; Zbl 1441.14073)], showing that one can only have (*) when the quintic form \(f(\lambda,\mu)=\mathrm{det}(\lambda A+\mu B)\) factors over \(\mathbb{Q}\). The counting question for this latter problem is then attacked using ideas of R. Dietmann [Mathematika 58, No. 1, 35–44 (2012; Zbl 1276.11184)], depending ultimately on the theorem of E. Bombieri and J. Pila [Duke Math. J. 59, No. 2, 337–357 (1989; Zbl 0718.11048)] which counts integer points on algebraic curves.

MSC:

14G12 Hasse principle, weak and strong approximation, Brauer-Manin obstruction
14J20 Arithmetic ground fields for surfaces or higher-dimensional varieties
11D45 Counting solutions of Diophantine equations
11E12 Quadratic forms over global rings and fields
14G25 Global ground fields in algebraic geometry
14F22 Brauer groups of schemes

Software:

Magma

References:

[1] J.Berg, Obstructions to integral points on affine Châtelet surfaces. 2017. arxiv:1710.07969.
[2] B. J.Birch and H. P. F.Swinnerton-Dyer, The Hasse problem for rational surfaces. In: Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday III. J. Reine Angew. Math.274/275(1975), 164-174. https://doi.org/10.1515/crll.1975.274-275.164. · Zbl 0326.14007
[3] E.Bombieri and J.Pila, The number of integral points on arcs and ovals. Duke Math. J.59(1989), 337-357. https://doi.org/10.1215/S0012-7094-89-05915-2. · Zbl 0718.11048
[4] W.Bosma, J.Cannon, and C.Playoust, The Magma algebra system I. The user language. Computational algebra and number theory (London, 1993). J. Symbolic Comput.24(1997), 235-265. https://doi.org/10.1006/jsco.1996.0125. · Zbl 0898.68039
[5] R.de la Bretèche and T. D.Browning, Density of Châtelet surfaces failing the Hasse principle. Proc. Lond. Math. Soc.108(2014), 1030-1078. https://doi.org/10.1112/plms/pdt060. · Zbl 1291.14041
[6] M.Bright and J.Lyczak, A uniform bound on the Brauer groups of certain log K3 surfaces. arxiv:1705.04529. · Zbl 1420.14084
[7] J.-L.Colliot-Thélène and O.Wittenberg, Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines. Amer. J. Math.134(2012), 1303-1327. https://doi.org/10.1353/ajm.2012.0036. · Zbl 1295.14020
[8] J.-L.Colliot-Thélène and F.Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms. With an appendix by D. Wei and Xu. Compos. Math.145(2009), 309-363. https://doi.org/10.1112/S0010437X0800376X. · Zbl 1190.11036
[9] R.Dietmann, On the distribution of Galois groups. Mathematika58(2012), 35-44. https://doi.org/10.1112/S0025579311002105. · Zbl 1276.11184
[10] A.Grothendieck and J.Dieudonné, (1964), Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, 20, 24, 28, 32, Inst. Hautes Études Sci. Publ. Math. 20, 1964. · Zbl 0136.15901
[11] R.Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977. · Zbl 0367.14001
[12] J.Jahnel and D.Schindler, On the number of certain del Pezzo surfaces of degree four violating the Hasse principle. J. Number Theory162(2016), 224-254. https://doi.org/10.1016/j.jnt.2015.10.018. · Zbl 1454.11123
[13] J.Jahnel and D.Schindler, On integral points on degree four del Pezzo surfaces. Israel J. Math.222(2017), 21-62. https://doi.org/10.1007/s11856-017-1581-0. · Zbl 1445.11055
[14] J.Jahnel and D.Schindler, On the algebraic Brauer classes on open degree four del Pezzo surfaces. https://doi.org/10.1016/j.jnt.2019.01.010. · Zbl 1441.14073
[15] J.-P.Jouanolou, Théorèmes de Bertini et applications. Progress in Mathematics, 42, Birkhäuser Boston, Boston, MA, 1983. · Zbl 0519.14002
[16] M.Marden, Geometry of polynomials. Second ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. · Zbl 0173.02703
[17] H.Matsumura, Commutative ring theory. Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986. · Zbl 0603.13001
[18] V.Mitankin, Failures of the integral Hasse principle for affine quadric surfaces. J. Lond. Math. Soc. (2)95(2017), no. 3, 1035-1052. https://doi.org/10.1112/jlms.12047. · Zbl 1409.11025
[19] B.Osserman, Lecture notes on Properties of fibers and applications. 2017. https://www.math.ucdavis.edu/∼osserman/classes/248B-W12/notes/fibers.pdf.
[20] I.Schur, Vorlesungen über Invariantentheorie. Die Grundlehren der mathematischen Wissenschaften, 143, Springer-Verlag, Berlin-New York, 1968. · Zbl 0159.03703
[21] J.-P.Serre, Lectures on the Mordell-Weil theorem. Third ed., Aspects of Mathematics, 15, Friedr. Vieweg & Sohn, Braunschweig, 1997. https://doi.org/10.1007/978-3-663-10632-6. · Zbl 0863.14013
[22] O.Wittenberg, Intersections de deux quadriques et pinceaux de courbes de genre 1. Lecture Notes in Mathematics, 1901, Springer, Berlin, 2007. https://doi.org/10.1007/3-540-69137-5. · Zbl 1122.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.