×

The twin prime conjecture. (English) Zbl 1435.11121

In the last fifteen years or so there has been a wealth of results and methods dealing with small differences between primes (in what follows \(p\) with or without subscripts denotes primes). The author of this impressive overview paper is one of the mathematicians who has made some of the most important contributions in this field. The paper centers around the twin prime conjecture, which in its basic form states that there are infinitely many \(p\) such that \(p+2\) is prime. In the most optimistic form it states that \[ \pi_2(x) := \#\left\{p\le x:p+ 2 \text{ prime}\right\} = C\int_2^x\frac{dt}{\log^2t}+ O_\varepsilon(x^{1/2+\varepsilon}),\tag{1} \] where \[ C := 2\prod_{p>2}\left(1 - \frac{1}{(p-1)^2}\right). \] Although proving proving the basic conjecture and (1) seems out of reach nowadays, there are several ways to approximate to the twin prime conjecture. One of them is J.-r. Chen’s result [Sci. Sin. 16, 157–176 (1973; Zbl 0319.10056)] that there are infinitely many \(p\) such that \(p+2\) has at most two prime factors. Y. Zhang in 2013 [Ann. Math. (2) 179, No. 3, 1121–1174 (2014; Zbl 1290.11128)] proved that there are infinitely many pairs \((p_1, p_2)\) of distinct primes such that \[ |p_1 - p_2| \le A, \; A = 70\,000\,000.\tag{2} \] His arguments are built on the work of Goldston, Pintz and Yıldırım (so-called GPY method) [D. A. Goldston et al., Ann. Math. (2) 170, No. 2, 819–862 (2009; Zbl 1207.11096)]. They were optimized and improved by the author [Ann. Math. (2) 181, No. 1, 383–413 (2015; Zbl 1306.11073)], and the current record in (2) is \(A = 246\) [D. H. J. Polymath, Res. Math. Sci. 1, Paper No. 12, 83 p. (2014; Zbl 1365.11110)].
A related topic is the Chowla conjecture, whose weak form states that
\[ \sum_{n\le x}\lambda(n)\lambda(n+2) = o(x)\qquad(x\to\infty).\tag{3} \]
Here the Liouville function \(\lambda(n)\) equals \((-1)^n\) if \(n\) has an odd number of prime factors, otherwise \(\lambda(n)=1\). Although it was believed that (3) is as hard as the twin prime conjecture, T. Tao recently [Forum Math. Pi 4, Article ID e8, 36 p. (2016; Zbl 1383.11116)] proved a slightly weaker version of (3), namely \[ \sum_{n\le x}\frac{\lambda(n)\lambda(n+2)}{n} = o(\log x) \qquad(x\to \infty).\tag{4} \] Moreover, K. Matomäki and M. Radziwi{łł} [Ann. Math. (2) 183, No. 3, 1015–1056 (2016; Zbl 1339.11084)] proved that, for almost all intervals \([x, x+h] \subseteq [Y, 2Y]\), one has \[ \sum_{n\in[x,x+h]}\lambda(n) = O\left(\frac{h}{(\log h)^{1/10})}\right). \] The bulk of the paper consists of providing ideas and proofs behind the GPY method, sieve methods and the proof of (4). The interested reader will find seventy-five references for further study.

MSC:

11N05 Distribution of primes
11N35 Sieves
Full Text: DOI

Online Encyclopedia of Integer Sequences:

Number of twin prime pairs below 10^n.

References:

[1] R.C. Baker and T. Freiberg, Limit points and long gaps between primes, Q. J. Math., 67 (2016), 233-260. · Zbl 1346.11047 · doi:10.1093/qmath/haw003
[2] R.C. Baker and P. Pollack, Bounded gaps between primes with a given primitive root. II, Forum Math., 28 (2016), 675-687. · Zbl 1417.11146
[3] R.C. Baker and L. Zhao, Gaps between primes in Beatty sequences, Acta Arith., 172 (2016), 207-242. · Zbl 1350.11008
[4] R.C. Baker and L. Zhao, Gaps of smallest possible order between primes in an arithmetic progression, Int. Math. Res. Not. IMRN, 2016 (2016), 7341-7368. · Zbl 1404.11110
[5] W.D. Banks, T. Freiberg and J. Maynard, On limit points of the sequence of normalized prime gaps, Proc. Lond. Math. Soc. (3), 113 (2016), 515-539. · Zbl 1410.11114 · doi:10.1112/plms/pdw036
[6] W.D. Banks, T. Freiberg and C.L. Turnage-Butterbaugh, Consecutive primes in tuples · Zbl 1323.11071 · doi:10.4064/aa167-3-4
[7] E. Bombieri, On the large sieve, Mathematika, 12 (1965), 201-225. · Zbl 0136.33004 · doi:10.1112/S0025579300005313
[8] E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A, 293 (1966), 1-18. · Zbl 0151.04201 · doi:10.1098/rspa.1966.0155
[9] E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math., 156 (1986), 203-251. · Zbl 0588.10042 · doi:10.1007/BF02399204
[10] E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. II, Math. Ann., 277 (1987), 361-393. · Zbl 0625.10036 · doi:10.1007/BF01458321
[11] E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. III, J. Amer. Math. Soc., 2 (1989), 215-224. · Zbl 0674.10036 · doi:10.1090/S0894-0347-1989-0976723-6
[12] A. Castillo, C. Hall, R.J. Lemke Oliver, P. Pollack and L. Thompson, Bounded gaps between primes in number fields and function fields, Proc. Amer. Math. Soc., 143 (2015), 2841-2856. · Zbl 1321.11098 · doi:10.1090/S0002-9939-2015-12554-3
[13] J.R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica, 16 (1973), 157-176. · Zbl 0319.10056
[14] J.R. Chen, On the Goldbach’s problem and the sieve methods, Sci. Sinica, 21 (1978), 701-739. · Zbl 0399.10046
[15] S. Chowla, The Riemann Hypothesis and Hilbert’s Tenth Problem, Mathematics and Its Applications. Vol. 4, Gordon and Breach Science Publishers, New York-London-Paris, 1965. · Zbl 0136.32702
[16] L. Chua, S. Park and G.D. Smith, Bounded gaps between primes in special sequences, Proc. Amer. Math. Soc., 143 (2015), 4597-4611. · Zbl 1329.11101 · doi:10.1090/proc/12607
[17] A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris Math., 29 (1849), 397-401.
[18] P.D.T.A. Elliott and H. Halberstam, A conjecture in prime number theory, In: 1970 Symposia Mathematica. Vol. IV, INDAM, Rome, 1968/69, Academic Press, London, 1970, pp. 59-72. · Zbl 0238.10030
[19] P. Erdős, The difference of consecutive primes, Duke Math. J., 6 (1940), 438-441. · Zbl 0023.29801 · doi:10.1215/S0012-7094-40-00635-4
[20] K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao, Long gaps between primes, J. Amer. Math. Soc., 31 (2018), 65-105. · Zbl 1392.11071 · doi:10.1090/jams/876
[21] K. Ford, B. Green, S. Konyagin and T. Tao, Large gaps between consecutive prime numbers, Ann. of Math. (2), 183 (2016), 935-974. · Zbl 1338.11083 · doi:10.4007/annals.2016.183.3.4
[22] É. Fouvry, Autour du théorème de Bombieri-Vinogradov, Acta Math., 152 (1984), 219-244. · Zbl 0552.10024 · doi:10.1007/BF02392198
[23] É. Fouvry and F. Grupp, J. Reine Angew. Math., 370 (1986), 101-126. · Zbl 0588.10051
[24] É. Fouvry and H. Iwaniec, On a theorem of Bombieri-Vinogradov type, Mathematika, 27 (1980), 135-152. · Zbl 0469.10027 · doi:10.1112/S0025579300010032
[25] É. Fouvry and H. Iwaniec, Primes in arithmetic progressions, Acta Arith., 42 (1983), 197-218. · Zbl 0517.10045 · doi:10.4064/aa-42-2-197-218
[26] N. Frantzikinakis, An averaged Chowla and Elliott conjecture along independent polynomials, Int. Math. Res. Not. IMRN, 2018 (2018), 3721-3743. · Zbl 1440.11185
[27] N. Frantzikinakis and B. Host, The logarithmic Sarnak conjecture for ergodic weights, Ann. of Math. (2), 187 (2018), 869-931. · Zbl 1400.11129 · doi:10.4007/annals.2018.187.3.6
[28] T. Freiberg, Short intervals with a given number of primes, J. Number Theory, 163 (2016), 159-171. · Zbl 1405.11119 · doi:10.1016/j.jnt.2015.11.009
[29] D.A. Goldston, J. Pintz and C.Y. Yıldırım, Primes in tuples. I, Ann. of Math. (2), 170 (2009), 819-862. · Zbl 1207.11096 · doi:10.4007/annals.2009.170.819
[30] É. Goudout, Théorème d’Erdős-Kac dans presque tous les petits intervalles, Acta Arith., 182 (2018), 101-116. · Zbl 1422.11194 · doi:10.4064/aa8480-11-2017
[31] A. Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. (N.S.), 52 (2015), 171-222. · Zbl 1319.11064 · doi:10.1090/S0273-0979-2015-01480-1
[32] G.H. Hardy and J.E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math., 44 (1923), 1-70. · JFM 48.0143.04 · doi:10.1007/BF02403921
[33] W. Huang and X. Wu, On the set of the difference of primes, Proc. Amer. Math. Soc., 145 (2017), 3787-3793. · Zbl 1422.11191 · doi:10.1090/proc/13533
[34] M.N. Huxley, Small differences between consecutive primes, Mathematika, 20 (1973), 229-232. · Zbl 0287.10029 · doi:10.1112/S0025579300004836
[35] M.N. Huxley, Small differences between consecutive primes. II, Mathematika, 24 (1977), 142-152. · Zbl 0367.10038 · doi:10.1112/S0025579300009037
[36] M.N. Huxley, An application of the Fouvry-Iwaniec theorem, Acta Arith., 43 (1984), 441-443. · Zbl 0542.10036 · doi:10.4064/aa-43-4-441-443
[37] D.A. Kaptan, A note on small gaps between primes in arithmetic progressions, Acta Arith., 172 (2016), 351-375. · Zbl 1337.11061
[38] O. Klurman, Correlations of multiplicative functions and applications, Compos. Math., 153 (2017), 1622-1657. · Zbl 1434.11202 · doi:10.1112/S0010437X17007163
[39] O. Klurman and A.P. Mangerel, Rigidity theorems for multiplicative functions, Math. Ann., 372 (2018), 651-697. · Zbl 1457.11131 · doi:10.1007/s00208-018-1724-6
[40] E. Kowalski, Gaps between prime numbers and primes in arithmetic progressions [after Y. Zhang and J. Maynard], Astérisque, 367-368 (2015), 327-366. · Zbl 1356.11066
[41] S. Lester, K. Matomäki and M. Radziwiłł, Small scale distribution of zeros and mass of modular forms, J. Eur. Math. Soc. (JEMS) · Zbl 1404.11041 · doi:10.4171/JEMS/794
[42] H. Li and H. Pan, Bounded gaps between primes of a special form, Int. Math. Res. Not. IMRN, 2015 (2015), 12345-12365. · Zbl 1391.11117 · doi:10.1093/imrn/rnt197
[43] J. Li, K. Pratt and G. Shakan, Q. J. Math., 68 (2017), 729-758. · Zbl 1426.11091
[44] H. Maier, Small differences between prime numbers, Michigan Math. J., 35 (1988), 323-344. · Zbl 0671.10037 · doi:10.1307/mmj/1029003814
[45] H. Maier and M.Th. Rassias, Large gaps between consecutive prime numbers containing perfect k-th powers of prime numbers, J. Funct. Anal., 272 (2017), 2659-2696. · Zbl 1355.11092 · doi:10.1016/j.jfa.2016.08.014
[46] K. Matomäki and M. Radziwiłł, Multiplicative functions in short intervals, Ann. of Math. (2), 183 (2016), 1015-1056. · Zbl 1339.11084 · doi:10.4007/annals.2016.183.3.6
[47] K. Matomäki, M. Radziwiłł and T. Tao, An averaged form of Chowla’s conjecture, Algebra Number Theory, 9 (2015), 2167-2196. · Zbl 1377.11109 · doi:10.2140/ant.2015.9.2167
[48] K. Matomäki, M. Radziwiłł and · Zbl 1394.11066 · doi:10.1017/fms.2016.6
[49] K. Matomäki and X. Shao, Vinogradov’s three primes theorem with almost twin primes, Compos. Math., 153 (2017), 1220-1256. · Zbl 1395.11120 · doi:10.1112/S0010437X17007072
[50] J. Maynard, Small gaps between primes, Ann. of Math. (2), 181 (2015), 383-413. · Zbl 1306.11073 · doi:10.4007/annals.2015.181.1.7
[51] J. Maynard, Dense clusters of primes in subsets, Compos. Math., 152 (2016), 1517-1554. · Zbl 1382.11074 · doi:10.1112/S0010437X16007296
[52] J. Maynard, Large gaps between primes, Ann. of Math. (2), 183 (2016), 915-933. · Zbl 1353.11099 · doi:10.4007/annals.2016.183.3.3
[53] H. Parshall, Small gaps between configurations of prime polynomials, J. Number Theory, 162 (2016), 35-53. · Zbl 1402.11116 · doi:10.1016/j.jnt.2015.10.009
[54] G.Z. Pil’tjaĭ, The magnitude of the difference between consecutive primes, In: Studies in Number Theory. No. 4, Izdat. Saratov. Univ., Saratov, 1972, pp. 73-79. · Zbl 0249.10038
[55] Pintz, J., On the ratio of consecutive gaps between primes, 285-304 (2015) · Zbl 1390.11107 · doi:10.1007/978-3-319-22240-0_17
[56] Pintz, J., Patterns of primes in arithmetic progressions, 369-379 (2017) · Zbl 1426.11092 · doi:10.1007/978-3-319-55357-3_19
[57] P. Pollack, Bounded gaps between primes with a given primitive root, Algebra Number Theory, 8 (2014), 1769-1786. · Zbl 1392.11073 · doi:10.2140/ant.2014.8.1769
[58] P. Pollack and L. Thompson, Arithmetic functions at consecutive shifted primes, Int. J. Number Theory, 11 (2015), 1477-1498. · Zbl 1327.11063 · doi:10.1142/S1793042115400023
[59] D.H.J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci., 1 (2014), Art. 12. · Zbl 1365.11110
[60] D.H.J. Polymath, New equidistribution estimates of Zhang type, Algebra Number Theory, 8 (2014), 2067-2199. · Zbl 1307.11097 · doi:10.2140/ant.2014.8.2067
[61] R.A. Rankin, The difference between consecutive prime numbers. IV, Proc. Amer. Math. Soc., 1 (1950), 143-150. · Zbl 0036.30601 · doi:10.1090/S0002-9939-1950-0034800-5
[62] G. Ricci, Sull’andamento della differenza di numeri primi consecutivi, Riv. Mat. Univ. Parma, 5 (1954), 3-54. · Zbl 0058.27602
[63] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 1-18. · Zbl 1193.11086 · doi:10.1090/S0273-0979-06-01142-6
[64] K. Soundararajan, The Liouville function in short intervals, Astérisque, 390 (2017), 453-479; Séminaire Bourbaki. Vol. 2015/2016, 1104-1119. · Zbl 1373.11072
[65] T. Tao, The Erdős discrepancy problem, Discrete Anal., 1 (2016). · Zbl 1353.11087
[66] T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi, 4 (2016), e8. · Zbl 1383.11116
[67] J. Teräväinen, Almost primes in almost all short intervals, Math. Proc. Cambridge Philos. Soc., 161 (2016), 247-281. · Zbl 1371.11132 · doi:10.1017/S0305004116000232
[68] J. Teräväinen, On binary correlations of multiplicative functions, Forum Math. Sigma, 6 (2018), e10. · Zbl 1469.11385 · doi:10.1017/fms.2018.10
[69] J. Thorner, Bounded gaps between primes in Chebotarev sets, Res. Math. Sci., 1 (2014), Art. 4. · Zbl 1362.11082
[70] L. Troupe, Bounded gaps between prime polynomials with a given primitive root, Finite Fields Appl., 37 (2016), 295-310. · Zbl 1402.11117 · doi:10.1016/j.ffa.2015.11.001
[71] S. Uchiyama, On the difference between consecutive prime numbers. Collection of articles in memory of Juriĭ Vladimirovič Linnik, Acta Arith., 27 (1975), 153-157. · Zbl 0301.10037 · doi:10.4064/aa-27-1-153-157
[72] A. Vatwani, Bounded gaps between Gaussian primes, J. Number Theory, 171 (2017), 449-473. · Zbl 1414.11113 · doi:10.1016/j.jnt.2016.07.008
[73] A.I. Vinogradov, The density hypothesis for Dirichet L-series, Izv. Akad. Nauk SSSR Ser. Mat., 29 (1965), 903-934. · Zbl 0128.04205
[74] J. Wu, Chen’s double sieve, Goldbach’s conjecture and the twin prime problem, Acta Arith., 114 (2004), 215-273. · Zbl 1049.11107 · doi:10.4064/aa114-3-2
[75] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2), 179 · Zbl 1290.11128 · doi:10.4007/annals.2014.179.3.7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.