×

Bifurcations, robustness and shape of attractors of discrete dynamical systems. (English) Zbl 1434.37015

The aim of this paper is to study the global properties of the topological nature of the attractors of discrete dynamical systems and the stability or change of these properties when the system is disturbed or bifurcated. The authors study the Andronov-Hopf bifurcation for homeomorphisms of the plane and robustness properties for attractors of such homeomorphisms. The relationships between flow attractors and attractors of homeomorphisms in \(\mathbb{R}^n\) are investigated, as well as the Čech homology and the shape of fractals in the plane. Some remarks about the recent theory of Conley attractors for IFS are discussed.

MSC:

37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37G35 Dynamical aspects of attractors and their bifurcations
37C20 Generic properties, structural stability of dynamical systems
37B25 Stability of topological dynamical systems
28A80 Fractals
55N05 Čech types

References:

[1] Barnsley, MF, Fractals Everyhwere (1988), Boston: Academic Press, Boston · Zbl 0691.58001
[2] Barnsley, MF; Ervin, V.; Hardin, D.; Lancaster, J., Solution of an inverse problem for fractals and other sets, Proc. Natl. Acad. Sci. USA, 83, 7, 1975-1977 (1986) · Zbl 0613.28008 · doi:10.1073/pnas.83.7.1975
[3] Barnsley, MF; Vince, A., The Conley attractors of an iterated function system, Bull. Aust. Math. Soc., 88, 267-279 (2013) · Zbl 1417.37080 · doi:10.1017/S0004972713000348
[4] Bhatia, N.P., Szego, G.P.: Stability theory of dynamical systems. Die Grundlehren der mathematischen Wissenschaften, vol. 161. Springer, Berlin Heidelberg (1970) · Zbl 0213.10904
[5] Borsuk, K., Theory of Shape, Monographie Matematyczne (1975), Warsaw: Polish Scientific Publishers, Warsaw · Zbl 0312.57001
[6] Conley, C.: Isolated invariant sets and the Morse index. In: CBMS Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, Providence (1978) · Zbl 0397.34056
[7] Cordier, J.M., Porter, T.: Shape theory. In: Categorical Methods of Approximation. Ellis Horwood Ltd., Chichester, Hasted Press [John Wiley & Sons, Inc.], New York (1989) · Zbl 0663.18001
[8] Daverman, R.J.: Decompositions of Manifolds. AMS Chelsea Publishing, Providende, Reprint of the original (2007) · Zbl 1130.57001
[9] Dydak, J., Segal, J.: Shape theory. An introduction. In: Lecture Notes in Mathematics, vol. 688. Springer, Berlin (1978) · Zbl 0401.54028
[10] Giraldo, A.; Morón, M.; Ruiz del Portal, FR; Sanjurjo, JMR, Shape of global attractors in topological spaces, Nonlinear Anal., 60, 5, 837-847 (2005) · Zbl 1060.37010 · doi:10.1016/j.na.2004.03.036
[11] Giraldo, A.; Sanjurjo, JMR, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z., 232, 4, 739-746 (1999) · Zbl 0942.37052 · doi:10.1007/PL00004781
[12] Gunther, B.; Segal, J., Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Am. Math. Soc., 119, 321-329 (1993) · Zbl 0822.54014 · doi:10.2307/2159860
[13] Hastings, HM, A higher-dimensional Poincaré-Bendixson theorem, Glas. Mat. Ser. III, 14, 2, 263-268 (1979) · Zbl 0435.34020
[14] Hurley, M., Properties of attractors of generic homeomorphisms, Ergod. Theory Dyn. Syst., 16, 1297-1310 (1996) · Zbl 0869.58033 · doi:10.1017/S0143385700010038
[15] Kapitanski, L.; Rodnianski, I., Shape and Morse theory of attractors, Commun. Pure Appl. Math., 53, 218-242 (2000) · Zbl 1026.37007 · doi:10.1002/(SICI)1097-0312(200002)53:2<218::AID-CPA2>3.0.CO;2-W
[16] Kennedy, JA, The topology of attractors, Ergod. Theory Dyn. Syst., 16, 1311-1322 (1996) · Zbl 0868.58054 · doi:10.1017/S014338570001004X
[17] Mardesic, S.: Strong shape and homology. In: Springer Monographs in Mathematics. Springer, Berlin (2000) · Zbl 0939.55007
[18] Mardesic, S., Segal, J.: Shape theory. The inverse system approach. In: North-Holland Mathematical Library, vol. 26. North-Holland Publishing Co., Amsterdam, New York (1982) · Zbl 0495.55001
[19] Naimark, J., Motions close to doubly asymptotic motions, Soviet Math. Dokl., 8, 228-231 (1967) · Zbl 0155.14503
[20] Robbin, J.W., Salamon, D.: Dynamical systems, shape theory and the Conley index. Ergod. Theory Dyn. Syst. 8, 375-393 (Charles Conley Memorial Volume) (1988) · Zbl 0682.58040
[21] Robinson, JC, Global attractors: topology and finite-dimensional dynamics, J. Dyn. Differ. Equ., 11, 3, 557-581 (1999) · Zbl 0953.34049 · doi:10.1023/A:1021918004832
[22] Robinson, RC, An Introduction to Dynamical Systems: Continuous and Discrete (2004), Upper Saddle River: Prentice-Hall, Upper Saddle River · Zbl 1073.37001
[23] Ruelle, D.; Takens, F., On the nature of turbulence, Commun. Math. Phys., 20, 167-192 (1971) · Zbl 0223.76041 · doi:10.1007/BF01646553
[24] Ruiz del Portal, FR; Sánchez-Gabites, JJ, Čech cohomology of attractors of discrete dynamical systems, J. Differ. Equ., 257, 2826-2845 (2014) · Zbl 1297.54075 · doi:10.1016/j.jde.2014.05.055
[25] Sacker, R.: On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. New York Univ., IMM-NYU 333 (1964)
[26] Sanchez-Gabites, JJ, Unstable attractors in manifolds, Trans. Am. Math. Soc., 362, 3563-3589 (2010) · Zbl 1197.54047 · doi:10.1090/S0002-9947-10-05061-0
[27] Sanjurjo, JMR, Multihomotopy, Čech spaces of loops and shape groups, Proc. Lond. Math. Soc., 69, 330-344 (1994) · Zbl 0826.55004 · doi:10.1112/plms/s3-69.2.330
[28] Sanjurjo, JMR, On the structure of uniform attractors, J. Math. Anal. Appl., 192, 2, 519-528 (1995) · Zbl 0823.58033 · doi:10.1006/jmaa.1995.1186
[29] Sanjurjo, JMR, Global topological properties of the Hopf bifurcation, J. Differ. Equ., 243, 2, 238-255 (2007) · Zbl 1126.37036 · doi:10.1016/j.jde.2007.05.001
[30] Sanjurjo, J.M.R.: Stability, attraction and shape: a topological study of flows. In: Topological methods in nonlinear analysis. Lecture Notes in Nonlinear Analysis 12, pp. 9-13. Juliusz Schauder Center for Nonlinear Studies, Torun (2011) · Zbl 1229.37016
[31] Spanier, EH, Algebraic Topology (1966), New York: McGraw-Hill, New York · Zbl 0145.43303
[32] Whitney, H., Regular families of curves, Ann. Math., 34, 2, 224-270 (1933) · Zbl 0006.37101 · doi:10.2307/1968202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.