×

The model-theoretic expressiveness of propositional proof systems. (English) Zbl 1434.03132

Goranko, Valentin (ed.) et al., 26th EACSL annual conference on computer science logic, CSL 2017, Stockholm, Sweden, August 20–24, 2017. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 82, Article 27, 18 p. (2017).
Summary: We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental importance in descriptive complexity theory. Our main results are that Horn resolution has the same expressive power as least fixed-point logic, that bounded width resolution captures existential least fixed-point logic, and that the (monomial restriction of the) polynomial calculus of bounded degree solves precisely the problems definable in fixed-point logic with counting.
For the entire collection see [Zbl 1372.68009].

MSC:

03F20 Complexity of proofs
03C13 Model theory of finite structures
Full Text: DOI