×

Existence of solutions of set-valued equilibrium problems in topological vector spaces with applications. (English) Zbl 1433.90149

Summary: In this paper, we first introduce the new notions of \(\overline{\mathbb{R}}_+\)-local-intersection property, \( \overline{\mathbb{R}}_+\)-local-inclusion property, \( \overline{\mathbb{R}}_+\)-strongly transfer lower semicontinuity, \(\mathbb{R}_-\)-weakly transfer lower semicontinuity and \(\mathbb{R}_-\)-strongly transfer lower semicontinuity for a set-valued mapping \(\Phi\) in topological vector spaces. Then, using these notions, we characterize the existence of set-valued equilibrium without assuming any form of convexity of function and/or convexity and compactness of sets. Furthermore, we apply the basic results obtained in the paper to Browder variational inclusion, with weekend conditions on the involved set-valued operators and provide an affirmative answer to some open question posed by B. Alleche and V. D. Rădulescu in their final remark of [ibid. 12, No. 8, 1789–1810 (2018; Zbl 1403.26004)]. Some application of our results to characterize the existence of set-valued pure strategy Nash equilibrium in games with discontinuous and non-convex payoff functions and nonconvex and/or noncompact strategy spaces is presented. Finally, we characterize the existence of single-valued equilibrium problem without assuming any form of convexity of function and/or convexity and compactness of sets in the setting of topological vector spaces. Our results improve and generalize many known results in the current literature.

MSC:

90C29 Multi-objective and goal programming
49J53 Set-valued and variational analysis
90C48 Programming in abstract spaces
91B50 General equilibrium theory

Citations:

Zbl 1403.26004
Full Text: DOI

References:

[1] Nesah, R.; Tian, G., Existence of solutions of minimax inequalities, equilibria in games and fixed points without convexity and compactness assumptions, J. Optim. Theory Appl., 157, 75-95 (2013) · Zbl 1266.90184 · doi:10.1007/s10957-012-0176-5
[2] Ansari, Qh; Lin, Yc; Yao, Jc, General KKM theorem with applications to minimax and variational inequalities, J. Optim. Theory Appl., 104, 41-57 (2000) · Zbl 0956.49004 · doi:10.1023/A:1004620620928
[3] Ansari, Qh; Wong, Nc; Yao, Jc, The existence of nonlinear inequalities, Appl. Math. Lett., 12, 89-92 (1999) · Zbl 0940.49010 · doi:10.1016/S0893-9659(99)00062-2
[4] Lin, Lj; Ansari, Qh; Yu, Zt; Lai, Lp, Fixed point and maximal elements with applications to abstract economies and minimax inequalities, J. Math. Anal. Appl., 284, 656-671 (2003) · Zbl 1033.47039 · doi:10.1016/S0022-247X(03)00385-8
[5] Lin, Lj; Ansari, Qh, Collective fixed points and maximal elements with applications to abstract economies, J. Math. Anal. Appl., 296, 455-472 (2004) · Zbl 1051.54028 · doi:10.1016/j.jmaa.2004.03.067
[6] Yao, Jc, Nash equilibria in \(n\)-person games without convexity, Appl. Math. Lett., 5, 67-69 (1992) · Zbl 0760.90097 · doi:10.1016/0893-9659(92)90067-J
[7] Ding, Xp; Tan, Kk, A minimax inequlity with applications to existence of equlibrium point and fixed point theorems, Collecque Math., 63, 233-274 (1992) · Zbl 0833.49009 · doi:10.4064/cm-63-2-233-247
[8] Bianchi, M.; Shaible, S., Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90, 1, 31-43 (1996) · Zbl 0903.49006 · doi:10.1007/BF02192244
[9] Laszlo, S.; Viorel, A., Densely defined equilibrium problems, J. Optim. Theory Appl., 166, 52-75 (2015) · Zbl 1321.47132 · doi:10.1007/s10957-014-0702-8
[10] Oettli, W.; Schlager, D., Existence of equilibria for monotone multivalued mappings, Math. Methods Oper. Res., 48, 2, 219-228 (1998) · Zbl 0930.90077 · doi:10.1007/s001860050024
[11] Qiu, Jh; He, F.; Sooubeyaran, A., Equilibrium version of variaonal principle in quasi-metric spaces and the robust trap problem, Optimization, 67, 1, 25-53 (2018) · Zbl 1427.90278 · doi:10.1080/02331934.2017.1387257
[12] Bonnas, Jf; Shapiro, A., Perturbation Analysis of Optimization Problems (2000), New York: Springer, New York · Zbl 0966.49001
[13] Song, W.; Giannessi, F., Vector equilibrium problems with set-valued mappings, Vector Variational Inequalities and Vector Eqilibria. Nonconvex Optimization and Its Applications, 403-422 (2000), Boston: Springer, Boston · Zbl 0993.49011
[14] Alleche, B.; Rǎdulescu, Vd, Equilibrium problem technique in the qualitative analysis of quasi-hemivariational inequalities, Optimization, 64, 9, 1855-1868 (2015) · Zbl 1337.47079 · doi:10.1080/02331934.2014.917307
[15] Alleche, B.; Rǎdulescu, Vd, Set-valued equilibrium problems with applications to Browder variational inclusions and fixed point theory, Nonlinear Anal. Real World Appl., 28, 251-268 (2016) · Zbl 1327.49029 · doi:10.1016/j.nonrwa.2015.10.002
[16] Alleche, B.; Rǎdulescu, Vd, Further on set-valued equilibrium problems in the pseudo-monotone case and applications to Browder variational inclusions, Optim. Lett. (2018) · Zbl 1403.26004 · doi:10.1007/s11590-1233-2
[17] Alleche, B., On hemicontinuity of biufunctions and applications tro regularization methods for equilibrium problems, Adv. Nonlinear Anal., 3, 2, 69-80 (2014) · Zbl 1287.49008
[18] Tian, G., Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl., 170, 2, 457-471 (1992) · Zbl 0767.49007 · doi:10.1016/0022-247X(92)90030-H
[19] Shin, Mh; Tian, Kk, Browder-Hartman-Stampachia variational inequalities for multivalued monotone operators, J. Math. Anal. Appl., 134, 431-440 (1988) · Zbl 0671.47043 · doi:10.1016/0022-247X(88)90033-9
[20] Browder, Fe, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177, 283-301 (1968) · Zbl 0176.45204 · doi:10.1007/BF01350721
[21] Denlowski, Z.; Migorski, S.; Papageorgiou, Ns, An Introduction to Nonlinear Analysis: Theory (2003), New York: Kluwer Academic, New York · Zbl 1040.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.