×

Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. (English) Zbl 1433.74009

Summary: In this paper the relaxed micromorphic material model for anisotropic elasticity is used to describe the dynamical behavior of a band-gap metamaterial with tetragonal symmetry. Unlike other continuum models (Cauchy, Cosserat, second gradient, classical Mindlin-Eringen micromorphic etc.), the relaxed micromorphic model is endowed to capture the main microscopic and macroscopic characteristics of the targeted metamaterial, namely, stiffness, anisotropy, dispersion and band-gaps. The simple structure of our material model, which simultaneously lives on a micro-, a meso- and a macroscopic scale, requires only the identification of a limited number of frequency-independent and thus truly constitutive parameters, valid for both static and wave-propagation analyses in the plane. The static macro- and micro-parameters are identified by numerical homogenization in static tests on the unit-cell level in [the first author et al., J. Elasticity 139, No. 2, 269–298 (2020; Zbl 1433.74014)]. The remaining inertia parameters for dynamical analyses are calibrated on the dispersion curves of the same metamaterial as obtained by a classical Bloch-Floquet analysis for two wave directions. We demonstrate via polar plots that the obtained material parameters describe very well the response of the structural material for all wave directions in the plane, thus covering the complete panorama of anisotropy of the targeted metamaterial.

MSC:

74A10 Stress
74A30 Nonsimple materials
74A35 Polar materials
74A60 Micromechanical theories
74B05 Classical linear elasticity
74M25 Micromechanics of solids
74Q15 Effective constitutive equations in solid mechanics
74J05 Linear waves in solid mechanics

Citations:

Zbl 1433.74014

References:

[1] Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface (2018). arXiv preprint. arXiv:1810.12578 · Zbl 1465.74087
[2] Aivaliotis, A.; Daouadji, A.; Barbagallo, G.; Tallarico, D.; Neff, P.; Madeo, A., Microstructure-related Stoneley waves and their effect on the scattering properties of a 2d Cauchy/relaxed-micromorphic interface, Wave Motion, 90, 99-120 (2019) · Zbl 1465.74087
[3] Antonakakis, T.; Craster, R.; Guenneau, S., High-frequency homogenization of zero-frequency stop band photonic and phononic crystals, New J. Phys., 15, 10 (2013)
[4] Armenise, M. N.; Campanella, C. E.; Ciminelli, C.; Dell’Olio, F.; Passaro, V. M.N., Phononic and photonic band gap structures: modelling and applications, Phys. Proc., 3, 1, 357-364 (2010)
[5] Auffray, N., On the algebraic structure of isotropic generalized elasticity theories, Math. Mech. Solids, 20, 5, 565-581 (2015) · Zbl 1327.74037
[6] Auffray, N.; Le Quang, H.; He, Q.-C., Matrix representations for 3d strain-gradient elasticity, J. Mech. Phys. Solids, 61, 5, 1202-1223 (2013) · Zbl 1260.74012
[7] Barbagallo, G.; Madeo, A.; d’Agostino, M. V.; Abreu, R.; Ghiba, I.-D.; Neff, P., Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics, Int. J. Solids Struct., 120, 7-30 (2017)
[8] Barbagallo, G.; Tallarico, D.; d’Agostino, M. V.; Aivaliotis, A.; Neff, P.; Madeo, A., Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures, Int. J. Solids Struct., 162, 148-163 (2019)
[9] Bloch, F., Über die Quantenmechanik der Elektronen in Cristallgittern, Z. Phys. A, Hadrons Nucl., 52, 7, 555-600 (1929) · JFM 54.0990.01
[10] Miguel, C.; Truskinovsky, L., Lattice dynamics from a continuum viewpoint, J. Mech. Phys. Solids, 60, 8, 1508-1544 (2012)
[11] Chen, Y.; Lee, J. D., Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables, Phys. A, Stat. Mech. Appl., 322, 359-376 (2003) · Zbl 1076.74502
[12] Chen, Y.; Lee, J. D., Determining material constants in micromorphic theory through phonon dispersion relations, Int. J. Eng. Sci., 41, 8, 871-886 (2003)
[13] d’Agostino, M. V.; Barbagallo, G.; Ghiba, I.-D.; Abreu, R.; Madeo, A.; Neff, P., A panorama of dispersion curves for the isotropic weighted relaxed micromorphic model, Z. Angew. Math. Mech., 97, 11, 1436-1481 (2017) · Zbl 1538.74001
[14] dell’Isola, F.; Madeo, A.; Placidi, L., Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua, Z. Angew. Math. Mech., 92, 1, 52-71 (2012) · Zbl 1247.74031
[15] Dong, H.-W.; Zhao, S.-D.; Wang, Y.-S.; Zhang, C., Topology optimization of anisotropic broadband double-negative elastic metamaterials, J. Mech. Phys. Solids, 105, 54-80 (2017)
[16] Eringen, A. C., Microcontinuum Field Theories (1999), New York: Springer, New York · Zbl 0953.74002
[17] Findeisen, C.; Hohe, J.; Kadic, M.; Gumbsch, P., Characteristics of mechanical metamaterials based on buckling elements, J. Mech. Phys. Solids, 102, 151-164 (2017)
[18] Floquet, G., Sur les equations differentielles lineaires, Ann. Éc. Norm. Supér., 12, 1883, 47-88 (1883) · JFM 15.0279.01
[19] Hlaváček, M., A continuum theory for isotropic two-phase elastic composites, Int. J. Solids Struct., 11, 10, 1137-1144 (1975) · Zbl 0317.73003
[20] Lee, M. K.; Ma, P. S.; Lee, I. K.; Kim, H. W.; Kim, Y. Y., Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates, Appl. Phys. Lett., 98, 1 (2011)
[21] Madeo, A.; Barbagallo, G.; d’Agostino, M. V.; Placidi, L.; Neff, P., First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model, Proc. R. Soc. A, Math. Phys. Eng. Sci., 472, 2190 (2016) · Zbl 1371.82126
[22] Madeo, A.; Collet, M.; Miniaci, M.; Billon, K.; Ouisse, M.; Neff, P., Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia, J. Elast., 130, 1-25 (2017)
[23] Madeo, A.; Neff, P.; Aifantis, E. C.; Barbagallo, G.; d’Agostino, M. V., On the role of micro-inertia in enriched continuum mechanics, Proc. R. Soc. A, 473, 2198 (2017) · Zbl 1404.82039
[24] Madeo, A.; Neff, P.; d’Agostino, M. V.; Barbagallo, G., Complete band gaps including non-local effects occur only in the relaxed micromorphic model, C. R., Méc., 344, 11, 784-796 (2016)
[25] Madeo, A.; Neff, P.; Ghiba, I.-D.; Placidi, L.; Rosi, G., Band gaps in the relaxed linear micromorphic continuum, Z. Angew. Math. Mech., 95, 9, 880-887 (2014) · Zbl 1326.74106
[26] Madeo, A.; Neff, P.; Ghiba, I.-D.; Placidi, L.; Rosi, G., Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps, Contin. Mech. Thermodyn., 27, 4-5, 551-570 (2015) · Zbl 1341.74085
[27] Madeo, A.; Neff, P.; Ghiba, I.-D.; Rosi, G., Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model, J. Mech. Phys. Solids, 95, 441-479 (2016) · Zbl 1482.74103
[28] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[29] Neff, P., On material constants for micromorphic continua, Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, 337-348 (2004), Aachen: Shaker-Verlag, Aachen · Zbl 1080.74007
[30] Neff, P.; Eidel, B.; d’Agostino, M. V.; Madeo, A., Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization, J. Elast. (in this volume) (2019) · Zbl 1433.74014 · doi:10.1007/s10659-019-09752-w
[31] Neff, P.; Forest, S., A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results, J. Elast., 87, 2-3, 239-276 (2007) · Zbl 1206.74019
[32] Neff, P.; Ghiba, I.-D.; Madeo, A.; Placidi, L.; Rosi, G., A unifying perspective: the relaxed linear micromorphic continuum, Contin. Mech. Thermodyn., 26, 5, 639-681 (2014) · Zbl 1341.74135
[33] Neff, P., Madeo, A., Barbagallo, G., d’Agostino, M.V., Abreu, R., Ghiba, I.-D.: Real wave propagation in the isotropic-relaxed micromorphic model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2197) (2017). 10.1098/rspa.2016.0790 · Zbl 1404.82028
[34] Nemat-Nasser, S.; Srivastava, A., Overall dynamic constitutive relations of layered elastic composites, J. Mech. Phys. Solids, 59, 10, 1953-1965 (2011) · Zbl 1270.74168
[35] Nemat-Nasser, S.; Willis, J. R.; Srivastava, A.; Amirkhizi, A. V., Homogenization of periodic elastic composites and locally resonant sonic materials, Phys. Rev. B, 83, 10 (2011)
[36] Olive, M.; Auffray, N., Symmetry classes for even-order tensors, Math. Mech. Complex Syst., 1, 2, 177-210 (2013) · Zbl 1391.15089
[37] Olive, M.; Auffray, N., Symmetry classes for odd-order tensors, Z. Angew. Math. Mech., 94, 5, 421-447 (2014) · Zbl 1302.15030
[38] Owczarek, S.; Ghiba, I.-D.; d’Agostino, M. V.; Neff, P., Nonstandard micro-inertia terms in the relaxed micromorphic model: well-posedness for dynamics, Math. Mech. Solids, 24, 10, 3200-3215 (2019) · Zbl 07273362
[39] Placidi, L.; Rosi, G.; Giorgio, I.; Madeo, A., Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials, Math. Mech. Solids, 19, 5, 555-578 (2014) · Zbl 1305.74047
[40] Rosi, G.; Auffray, N., Anisotropic and dispersive wave propagation within strain-gradient framework, Wave Motion, 63, 120-134 (2016) · Zbl 1469.74030
[41] Rosi, G.; Placidi, L.; Auffray, N., On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure, Eur. J. Mech. A, Solids, 69, 179-191 (2018) · Zbl 1406.74092
[42] Smyshlyaev, V. P., Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, Mech. Mater., 41, 4, 434-447 (2009)
[43] Smyshlyaev, V. P.; Cherednichenko, K. D., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media, J. Mech. Phys. Solids, 48, 6-7, 1325-1357 (2000) · Zbl 0984.74065
[44] Steurer, W.; Sutter-Widmer, D., Photonic and phononic quasicrystals, J. Phys. D, Appl. Phys., 40, 13, 229-247 (2007)
[45] Zhikov, V. V.; Pastukhova, S. E., Operator estimates in homogenization theory, Russ. Math. Surv., 71, 3, 417 (2016) · Zbl 1354.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.