×

Dynamic analysis of a reaction-diffusion impulsive hybrid system. (English) Zbl 1433.35424

Summary: In this paper, a predator-prey system with Crowley-Martin functional response, which is described by a couple of reaction-diffusion equations with impulsive effect, is studied analytically and numerically. The aim of this research is to analyze how the impulsive effect influences dynamics of the system. Dynamics of the system, including the ultimate boundedness, permanence and extinction, are investigated firstly under impulsive effects. Significantly, it is found that there exists a unique positive periodic solution that is globally asymptotically stable when impulsive effects reach some critical state. Additionally, a series of numerical simulations are carried out to further study the dynamics of the system, which are consistent with the analytical results.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
92D40 Ecology
35B10 Periodic solutions to PDEs
35B09 Positive solutions to PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
65G40 General methods in interval analysis
Full Text: DOI

References:

[1] Scheffer, M., Ecology of Shallow Lakes (1998), Chapman & Hall: Chapman & Hall London
[2] Akhmet, M. U.; Beklioglu, M.; Ergenc; Tkachenko, V. I., An impulsive ratio-dependent predator – prey system with diffusion, Nonlinear Anal. Real World Appl., 7, 1255-1267 (2006) · Zbl 1114.35097
[3] Turing, A., The chemical basis of morphogenesis, Phil. Trans. R. Soc. B, 237, 37-72 (1952) · Zbl 1403.92034
[4] Pearson, J. E., Complex patterns in a simple system, Science, 261, 189-192 (1993)
[5] Bois, J. S.; Jlicher, F.; Grill, S. W., Pattern formation in active fluids, Phys. Rev. Lett., 106, Article 028103 pp. (2011)
[6] Liu, Q. X.; Weerman, E. J.; Herman, P. M.J., Alternative mechanisms alter the emergent properties of self-organization in mussel beds, Proc. R. Soc. Lond. [Biol.], 279, 2744-2753 (2012)
[7] Hillerislambers, R.; Rietkerk, M.; Bosch, F. V.D., Vegetation pattern formation in semi-arid grazing systems, Ecology, 82, 50-61 (2001)
[8] Melkemi, L.; Mokrane, A. Z.; Youkana, A., On the uniform boundedness of the solutions of systems of reaction – diffusion equations, Electron. J. Qual. Theory Differ. Equ., 24, 1-10 (2005) · Zbl 1090.35095
[9] Pang, P. H.Y.; Wang, M., Qualitative analysis of a ratio-dependent predator – prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 133, 919-942 (2003) · Zbl 1059.92056
[10] Peng, R.; Wang, M., Positive steady-state of the Holling-Tanner prey-predator model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 135, 1, 149-164 (2005) · Zbl 1144.35409
[11] Hu, G.; Li, X.; Lu, S.; Wang, Y., Bifurcation analysis and spatiotemporal patterns in a diffusive predator – prey model, Int. J. Bifurcation Chaos, 24, 6, 1-15 (2014) · Zbl 1296.35008
[12] Dai, J.; Zhao, M.; Yu, G.; Wang, P., Delay-induced instability in a nutrient-phytoplankton system with flow, Phys. Rev. E, 91, 3, 1-6 (2015)
[13] Dai, J.; Zhao, M., Nonlinear analysis in a Nutrient-Algae-Zooplankton system with sinking of algae, Abstr. Appl. Anal., 2014, 2, 1-11 (2014) · Zbl 1470.92236
[14] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore · Zbl 0837.34003
[15] Zavalishchin, S. T.; Sesekin, A. N., Dynamic Impulse Systems: Theory and Applications (1997), Spinger Netherland · Zbl 0880.46031
[16] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl., 10, 680-690 (2009) · Zbl 1167.34318
[17] Dai, J.; Zhao, M.; Chen, S., Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances, J. Math. Comput. Simu., 84, 83-97 (2012) · Zbl 1257.92040
[18] Jatav, K. S.; Dhar, J., Hybrid approach for pest control with impulsive releasing of natural enemies and chemical pesticides: A plant-pest-natural enemy model, Nonlinear Anal. Hybrid Syst., 12, 79-92 (2014) · Zbl 1325.92089
[19] Chakrabory, K.; Das, K.; Yu, H., Modeling and analysis of a modified Leslie-Gower type three species food chain model with an impulsive control strategy, Nonlinear Anal. Hybrid Syst., 15, 171-184 (2015) · Zbl 1307.34067
[20] Zhao, M.; Wang, T.; Yu, G., Dynamics of an ecological model with impulsive control strategy and distributed time delay, J. Math. Comput. Simu., 82, 1432-1444 (2012) · Zbl 1251.92049
[21] Wang, P.; Zhao, M.; Pan, H.; Dai, J., Dynamic analysis of a Phytoplankton-Fish model with biological and artificial control, Discrete Dyn. Nat. Soc., 2014, 1, 1-15 (2014) · Zbl 1418.92231
[22] Wang, Q.; Wang, Z.; W, Y., An impulsive ratio-dependent n+1-species predator – prey model with diffusion, Nonlinear Anal. Real World Appl., 11, 2164-2174 (2010) · Zbl 1189.35362
[23] Liu, Z.; Zhong, S.; Liu, X., Permanence and periodic solutions for an impulsive reaction – diffusion food-chain system with Holling type III functional response, J. Franklin Inst., 348, 2, 277-299 (2011) · Zbl 1210.35278
[24] Liu, Z.; Zhong, S.; Liu, X., Permanence and periodic solutions for an impulsive reaction – diffusion food-chain system with ratio-dependent functional response, Commun. Nonlinear Sci. Numer. Simul., 19, 173-188 (2014) · Zbl 1344.92141
[25] Zhong, S.; Liu, X., Permanence and periodicity of a diffusive ratio-dependent predator – prey model with impulsive perturbations, Math. Appl. (Wuhan), 23, 554-562 (2010) · Zbl 1224.35212
[26] Struk, O. O.; Tkachenko, V. I., On Lotka-Volterra systems with diffusion and impulse action, Ukrainian Math. J., 54, 629-646 (2002) · Zbl 1004.35065
[27] Holling, C. S., The components of predation as revealed by a study of small mammal predation of European pine sawfly, Can. Entomol., 91, 293-320 (1959)
[28] Crowley, P. H.; Martin, E. K., Functional response and interference within and between year classes of a dragonfly population, JNABS, 8, 3, 211-221 (1989)
[29] Upadhyay, R. K.; Naji, R. K., Dynamics of a three species food-chain model with Crowley-Martin type functional response, Chaos Solitons Fractals, 42, 1337-1346 (2009) · Zbl 1198.37132
[30] Jazar, N. A.M., Global dynamics of a modified Leslie-Gower predator – prey model with Crowley-Martin functional response, J. Appl. Math. Comput., 43, 271-293 (2013) · Zbl 1300.34104
[31] Dong, Q.; Ma, W.; Sun, M., The asymptotic behavior of a Chemostat model with Crowley-Martin type functional response and time delays, J. Math. Chem., 51, 5, 1231-1248 (2013) · Zbl 1320.92071
[32] Shi, X.; Zhou, X.; Song, X., Analysis of a stage-structured predator – prey model with Crowley-Martin function, J. Appl. Math. Comput., 36, 459-472 (2011) · Zbl 1222.34054
[33] Meng, X.; Huo, H.; Xiang, H.; Zhang, X., Permanence of a predator – prey model with Crowley-Martin functional response and stage structure, (Proceeding of Fifth International Congress on Mathematical Biology, vol. 2 (2011)), 245-250
[34] Liu, X.; Zhong, S.; Tian, B., Asymptotic properties of a stochastic predator – prey model with Crowley-Martin functional response, J. Appl. Math. Comput., 43, 479-490 (2013) · Zbl 1325.92073
[35] Dong, Y.; Zhang, S., Qualitative analysis of a predator – prey model with Crowley-Martin functional response, J. Int. Bifurcation Chaos, 9, 110-128 (2015)
[36] Cushing, J. M., Periodic time-dependent predator – prey systems, SIAM. J. Appl. Math., 32, 82-95 (1977) · Zbl 0348.34031
[37] Pao, C. V., Nonlinear Parabolic and Elliptic Equations (1992), Plenum · Zbl 0777.35001
[38] Liu, X.; Chen, L., Global dynamics of the periodic logistic system with periodic impulsive perturbations, J. Math. Anal. Appl., 289, 278-291 (2004) · Zbl 1054.34015
[39] Walter, W., Differential inequalities and maximum principles; theory, new methods and applications, Nonlinear Anal., 30, 4695-4711 (1997) · Zbl 0893.35014
[40] Smith, L. H., (Dynamics of Competition. Dynamics of Competition, Lecture Notes in Mathematics, vol. 1714 (1999), Springer: Springer Berlin), 192-240 · Zbl 1002.92564
[41] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer: Springer Berlin · Zbl 0456.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.