×

Observer-based adaptive consensus tracking control for nonlinear multi-agent systems with actuator hysteresis. (English) Zbl 1432.93022

Summary: This paper addresses the consensus tracking problem of a class of nonlinear multi-agent systems by using observer-based control. The systems are in output-feedback form with both actuator hysteresis and external disturbances. Radial basis function neural networks are used to approximate unknown nonlinear functions. By constructing a state observer and using the backstepping technique, a distributed adaptive neural output-feedback control scheme is proposed to solve the consensus tracking problem. Approximation errors of neural networks together with external disturbances are adaptively estimated and counteracted. For a communication graph containing a spanning tree, we show that the proposed controller guarantees all signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the consensus tracking error and the observer error converge to an adjustable neighborhood of the origin. Finally, two simulation examples are provided to verify the performance of the control design.

MSC:

93A16 Multi-agent systems
93D50 Consensus
Full Text: DOI

References:

[1] Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks. Springer, London, U.K. (2011) · Zbl 1225.93003 · doi:10.1007/978-0-85729-169-1
[2] Li, Z., Duan, Z.: Cooperative Control of Multi-agent Systems: A Consensus Region Approach. CRC, Boca Raton (2014)
[3] Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988-1001 (2003) · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[4] Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520-1533 (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[5] Münz, U., Papachristodoulou, A., Allgöwer, F.: Consensus in multi-agent systems with coupling delays and switching topology. IEEE Trans. Autom. Control 56(12), 2976-2982 (2011) · Zbl 1368.93010 · doi:10.1109/TAC.2011.2161052
[6] Komareji, M., Shang, Y., Bouffanais, R.: Consensus in topologically interacting swarms under communication constraints and time-delays. Nonlinear Dyn. 93(3), 1287-1300 (2018) · Zbl 1398.90031 · doi:10.1007/s11071-018-4259-1
[7] Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Autom. Control 53(64), 1503-1509 (2008) · Zbl 1367.93567 · doi:10.1109/TAC.2008.924961
[8] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Phys. A 374(2), 853-863 (2007) · doi:10.1016/j.physa.2006.08.015
[9] Abdessameud, A., Tayebi, A.: On consensus algorithms design for double integrator dynamics. Automatica 49(1), 253-260 (2013) · Zbl 1257.93002 · doi:10.1016/j.automatica.2012.08.044
[10] Wang, J., Chen, K., Lewis, F.L.: Coordination of multi-agent systems on interacting physical and communication topologies. Syst. Control Lett. 100, 56-65 (2017) · Zbl 1356.93006 · doi:10.1016/j.sysconle.2016.12.008
[11] Abdessameud, A., Tayebi, A.: Distributed output regulation of heterogeneous linear multi-agent systems with communication constraints. Automatica 91, 152-158 (2018) · Zbl 1387.93007 · doi:10.1016/j.automatica.2018.01.020
[12] Yu, W., Wen, G., Chen, G., Cao, J.: Distributed Cooperative Control of Multi-agent Systems. Wiley, Newark (2016) · doi:10.1002/9781119246213
[13] Ding, L., Han, Q.-L., Ge, X., Zhang, X.-M.: An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybern. 48(4), 1110-1123 (2018) · doi:10.1109/TCYB.2017.2771560
[14] Yu, H., Xia, X.: Adaptive consensus of multi-agents in networks with jointly connected topologies. Automatica 48(8), 1783-1790 (2012) · Zbl 1267.93007 · doi:10.1016/j.automatica.2012.05.068
[15] Li, Z., Ren, W., Liu, X., Fu, M.: Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58(7), 1786-1791 (2013) · Zbl 1369.93032 · doi:10.1109/TAC.2012.2235715
[16] Liu, K., Xie, G., Ren, W., Wang, L.: Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies. Syst. Control Lett. 62(2), 152-162 (2013) · Zbl 1259.93008 · doi:10.1016/j.sysconle.2012.11.003
[17] Chen, W., Li, X., Ren, W., Wen, C.: Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel nussbaum-type function. IEEE Trans. Autom. Control 59(7), 1887-1892 (2014) · Zbl 1360.93068 · doi:10.1109/TAC.2013.2293452
[18] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359-366 (1989) · Zbl 1383.92015 · doi:10.1016/0893-6080(89)90020-8
[19] Hou, Z.G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern. B Cybern. 39(3), 636-647 (2009) · doi:10.1109/TSMCB.2008.2007810
[20] Zhang, H., Lewis, F.L., Qu, L.: Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans. Ind. Electron. 59(7), 3026-3041 (2012) · doi:10.1109/TIE.2011.2160140
[21] El-Ferik, S., Qureshi, A., Lewis, F.L.: Neuro-adaptive cooperative tracking control of unknown higher-order affine nonlinear systems. Automatica 50(3), 798-808 (2014) · Zbl 1298.93021 · doi:10.1016/j.automatica.2013.12.033
[22] Peng, Z., Wang, D., Zhang, H., Sun, G.: Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 25(8), 1508-1519 (2014) · doi:10.1109/TNNLS.2013.2293499
[23] Rezaee, H., Abdollahi, F.: Consensus problem over high-order multiagent systems with uncertain nonlinearities under deterministic and stochastic topologies. IEEE Trans. Cybern. 47(8), 2079-2088 (2017) · doi:10.1109/TCYB.2016.2628811
[24] Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995) · Zbl 0763.93043
[25] Polycarpou, M.M.: Stable adaptive neural scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447-451 (1996) · Zbl 0846.93060 · doi:10.1109/9.486648
[26] Ge, S.S., Wang, C.: Direct adaptive NN control for a class of nonlinear systems. IEEE Trans. Neural Netw. 13(1), 214-221 (2002) · doi:10.1109/72.977306
[27] Tong, S.-C., Li, Y.-M., Feng, G., Li, T.-S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. B Cybern. 41(4), 1124-1135 (2011) · doi:10.1109/TSMCB.2011.2108283
[28] Edalati, L., Sedigh, A.K., Shooredeli, M.A., Moarefianpour, A.: Asymptotic tracking control of strict-feedback nonlinear systems with output constraints in the presence of input saturation. IET Control Theory Appl. 12(6), 778-785 (2018) · doi:10.1049/iet-cta.2017.0563
[29] Yoo, S.J.: Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 666-672 (2013) · doi:10.1109/TNNLS.2013.2238554
[30] Shen, Q., Shi, P.: Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form. Automatica 53, 120-124 (2015) · Zbl 1371.93019 · doi:10.1016/j.automatica.2014.12.046
[31] Yoo, S.J.: Synchronised tracking control for multiple strict-feedback non-linear systems under switching network. IET Control Theory Appl. 8(8), 546-553 (2014) · doi:10.1049/iet-cta.2013.0942
[32] Chen, K., Wang, J., Zhang, Y., Liu, Z.: Leader-following consensus for a class of nonlinear strick-feedback multiagent systems with state time-delays. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2813399
[33] Liu, Z., Su, L., Ji, Z.: Neural network observer-based leader-following consensus of heterogenous nonlinear uncertain systems. Int. J. Mach. Learn. Cybern. 9(9), 1435-1443 (2018) · doi:10.1007/s13042-017-0654-z
[34] Wang, X., Li, S., Chen, M.: Composite backstepping consensus algorithms of leader-follower higher-order nonlinear multiagent systems subject to mismatched disturbances. IEEE Trans. Cybern. 48(6), 1935-1946 (2018) · doi:10.1109/TCYB.2017.2720680
[35] Chen, C.L.P., Ren, C.E., Du, T.: Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics. IEEE Trans. Fuzzy Syst. 24(4), 906-915 (2016) · doi:10.1109/TFUZZ.2015.2486817
[36] Chen, C.L.P., Wen, G.-X., Liu, Y.-J., Liu, Z.: Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 62(7), 3423-3429 (2016)
[37] Tao, G., Kokotović, P.V.: Adaptive control of plants with unknown hystereses. IEEE Trans. Autom. Control. 40(2), 200-212 (1995) · Zbl 0821.93047 · doi:10.1109/9.341778
[38] Li, H., Bai, L., Wang, L., Zhou, Q., Wang, H.: Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2048-2059 (2017) · doi:10.1109/TSMC.2016.2605706
[39] Edardar, M., Tan, X., Khalil, H.K.: Design and analysis of sliding mode controller under approximate hysteresis compensation. IEEE Trans. Control Syst. Technol. 23(2), 598-608 (2015) · doi:10.1109/TCST.2014.2329187
[40] Macki, J.W., Nistri, P., Zecca, P.: Mathematical models for hysteresis. SIAM Rev. 35, 94-123 (1993) · Zbl 0771.34018 · doi:10.1137/1035005
[41] Zhou, J., Wen, C.Y., Li, T.S.: Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans. Autom. Control 57(10), 2627-2633 (2012) · Zbl 1369.93323 · doi:10.1109/TAC.2012.2190208
[42] Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Autom. Control 59(5), 1336-1341 (2014) · Zbl 1360.93305 · doi:10.1109/TAC.2013.2289704
[43] Liu, Z., Chen, C., Zhang, Y., Chen, C.L.P.: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Trans. Cybern. 45(3), 521-532 (2015) · doi:10.1109/TCYB.2014.2329495
[44] Marino, R., Tomei, P., Verrelli, C.M.: Learning control for nonlinear systems in output feedback form. Syst. Control Lett. 61(12), 1242-1247 (2012) · Zbl 1255.93064 · doi:10.1016/j.sysconle.2012.07.011
[45] Wang, C., Wen, C., Wang, W., Hu, Q.: Output-feedback adaptive consensus tracking control for a class of high-order nonlinear multi-agent systems. Int. J. Robust Nonlinear Control 27, 4931-4948 (2017) · Zbl 1381.93013 · doi:10.1002/rnc.3837
[46] Chen, K., Wang, J., Zhang, Y., Liu, Z.: Adaptive consensus of nonlinear multi-agent systems with unknown backlash-like hysteresis. Neurocomputing 175, 698-703 (2016) · doi:10.1016/j.neucom.2015.10.114
[47] Marino, R., Tomei, P.: Nonlinear Control Design-Geometric. Adaptive and Robust. Prentice Hall, London (1995) · Zbl 0833.93003
[48] Krishnamurthy, P., Khorrami, F.: Robust adaptive control for nonlinear systems in generalized output-feedback canonical form. Int. J. Adapt. Control Signal Process. 17(4), 285-311 (2003) · Zbl 1032.93042 · doi:10.1002/acs.748
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.