×

Robust mixture modeling based on two-piece scale mixtures of normal family. (English) Zbl 1432.62029

Summary: In this paper, we examine the finite mixture (FM) model with a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family components. This family allows the development of a robust estimation of FM models. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and light/heavy tailed distributions. It represents an alternative family to the well-known scale mixtures of the skew normal (SMSN) family studied by M. D. Branco and D. K. Dey [J. Multivariate Anal. 79, No. 1, 99–113 (2001; Zbl 0992.62047)]. Also, the TP-SMN covers the SMN (normal, t, slash, and contaminated normal distributions) as the symmetric members and two-piece versions of them as asymmetric members. A key feature of this study is using a suitable hierarchical representation of the family to obtain maximum likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and real data, and then compared to other finite mixture of SMSN models.

MSC:

62E10 Characterization and structure theory of statistical distributions
62H10 Multivariate distribution of statistics

Citations:

Zbl 0992.62047

Software:

mixsmsn; R

References:

[1] McLachlan, G.; Peel, D.; ; Finite Mixture Models: New York, NY, USA 2000; . · Zbl 0963.62061
[2] Contreras-Reyes, J.E.; Cortés, D.D.; Bounds on Rényi and Shannon Entropies for Finite Mixtures of Multivariate Skew-Normal Distributions: Application to Swordfish (Xiphias gladius Linnaeus); Entropy: 2016; Volume 18 .
[3] Frühwirth-Schnatter, S.; Pyne, S.; Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions; Biostatistics: 2010; Volume 11 ,317-336. · Zbl 1437.62465
[4] Lin, T.I.; Lee, J.C.; Yen, S.Y.; Finite mixture modelling using the skew normal distribution; Stat. Sin.: 2007; Volume 17 ,909-927. · Zbl 1133.62012
[5] Basso, R.M.; Lachos, V.H.; Cabral, C.R.B.; Ghosh, P.; Robust mixture modeling based on scale mixtures of skew-normal distributions; Comput. Stat. Data Anal.: 2010; Volume 54 ,2926-2941. · Zbl 1284.62193
[6] Lin, T.I.; Robust mixture modeling using multivariate skew t distributions; Stat. Comput.: 2009; Volume 20 ,343-356.
[7] Lin, T.I.; Lee, J.C.; Hsieh, W.J.; Robust Mixture Modelling Using the Skew t Distribution; Stat. Comput.: 2007; Volume 17 ,81-92.
[8] Contreras-Reyes, J.E.; López Quintero, F.O.; Yáñez, A.A.; Towards Age Determination of Southern King Crab (Lithodes santolla) Off Southern Chile Using Flexible Mixture Modeling; J. Mar. Sci. Eng.: 2018; Volume 6 .
[9] Maleki, M.; Arellano-Valle, R.B.; Maximum a-posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions; J. Stat. Comput. Sim.: 2017; Volume 87 ,1061-1083. · Zbl 07191989
[10] Maleki, M.; Arellano-Valle, R.B.; Dey, D.K.; Mahmoudi, M.R.; Jalali, S.M.J.; A Bayesian Approach to Robust Skewed Autoregressive Processes; Calcutta Stat. Assoc. Bull.: 2017; Volume 69 ,165-182.
[11] Maleki, M.; Wraith, D.; Arellano-Valle, R.B.; Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions; Stat. Comput.: 2018; . · Zbl 1430.62105
[12] Maleki, M.; Wraith, D.; Arellano-Valle, R.B.; A flexible class of parametric distributions for Bayesian linear mixed models; Test: 2018; . · Zbl 1420.62288
[13] Prates, M.O.; Lachos, V.H.; Cabral, C.; mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions; J. Stat. Soft.: 2000; Volume 54 ,1-20.
[14] Hajrajabi, A.; Maleki, M.; Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations; J. Appl. Stat.: 2019; . · Zbl 1516.62318
[15] Maleki, M.; Wraith, D.; Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework; Comput. Stat.: 2019; . · Zbl 1505.62270
[16] Andrews, D.R.; Mallows, C.L.; Scale mixture of normal distribution; J. R. Stat. Soc. Ser. B: 1974; Volume 36 ,99-102. · Zbl 0282.62017
[17] Lange, K.L.; Little, R.; Taylor, J.; Robust statistical modeling using t distribution; J. Am. Stat. Assoc.: 1989; Volume 84 ,881-896.
[18] Lange, K.L.; Sinsheimer, J.S.; Normal/independent distributions and their applications in robust regression; J. Comput. Graph. Stat.: 1993; Volume 2 ,175-198.
[19] Maleki, M.; Nematollahi, A.R.; Autoregressive Models with Mixture of Scale Mixtures of Gaussian innovations; Iranian J. Sci. Technol. Trans. A: 2017; Volume 41 ,1099-1107. · Zbl 1392.62270
[20] Arellano-Valle, R.B.; Gómez, H.; Quintana, F.A.; Statistical inference for a general class of asymmetric distributions; J. Stat. Plan. Inf.: 2005; Volume 128 ,427-443. · Zbl 1095.62015
[21] Hoseinzadeh, A.; Maleki, M.; Khodadadi, Z.; Contreras-Reyes, J.E.; The Skew-Reflected-Gompertz distribution for analyzing symmetric and asymmetric data; J. Comput. Appl. Math.: 2019; Volume 349 ,132-141. · Zbl 1409.62045
[22] Moravveji, B.; Khodadai, Z.; Maleki, M.; A Bayesian Analysis of Two-Piece distributions based on the Scale Mixtures of Normal Family; Iranian J. Sci. Technol. Trans. A: 2018; .
[23] Maleki, M.; Mahmoudi, M.R.; Two-Piece Location-Scale Distributions based on Scale Mixtures of Normal family; Commun. Stat. Theor. Meth.: 2017; Volume 46 ,12356-12369. · Zbl 1384.62068
[24] Rubio, F.J.; Steel, M.F.G.; Inference in Two-Piece Location-Scale Models with Jeffreys Priors; Bayesian Anal.: 2014; Volume 9 ,1-22. · Zbl 1327.62157
[25] Branco, M.D.; Dey, D.K.; A general class of multivariate skew-elliptical distributions; J. Multivar. Anal.: 2001; Volume 79 ,99-113. · Zbl 0992.62047
[26] Mudholkar, G.S.; Hutson, A.D.; The epsilon-skew-normal distribution for analyzing near-normal data; J. Stat. Plan. Inf.: 2000; Volume 83 ,291-309. · Zbl 0943.62012
[27] Meng, X.; Rubin, D.B.; Maximum likelihood estimation via the ECM algorithm: A general framework; Biometrika: 2017; Volume 80 ,267-278. · Zbl 0778.62022
[28] Dempster, A.P.; Laird, N.M.; Rubin, D.B.; Maximum likelihood from incomplete data via the EM algorithm; J. R. Stat. Soc. Ser. B: 1977; Volume 39 ,1-38. · Zbl 0364.62022
[29] Liu, C.; Rubin, D.B.; The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence; Biometrika: 1994; Volume 81 ,633-648. · Zbl 0812.62028
[30] ; A Language and Environment for Statistical Computing: Vienna, Austria 2018; .
[31] Akaike, H.; A new look at the statistical model identification; IEEE Trans. Autom. Control: 1974; Volume 19 ,716-723. · Zbl 0314.62039
[32] Schwarz, G.; Estimating the dimension of a model; Ann. Stat.: 1978; Volume 6 ,461-464. · Zbl 0379.62005
[33] Ehrlich, I.; Participation in illegitimate activities: A theoretical and empirical investigation; J. Political Econ.: 1973; Volume 81 ,521-565.
[34] Vandaele, W.; Participation in illegitimate activities: Ehrlich revisited; Deterrence and Incapacitation: Washington, DC, USA 1978; ,270-335.
[35] Ghasami, S.; Khodadadi, Z.; Maleki, M.; Autoregressive Processes with Generalized Hyperbolic Innovations; Commun. Stat. Comput. Sim.: 2019; . · Zbl 1489.62275
[36] Zarrin, P.; Maleki, M.; Khodadadi, Z.; Arellano-Valle, R.B.; Time series process based on the unrestricted skew normal process; J. Stat. Comput. Sim.: 2019; Volume 89 ,38-51. · Zbl 07193712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.