×

Free boundary regularity for a multiphase shape optimization problem. (English) Zbl 1430.35279

The authors prove \(C^{1,\alpha}\)-regularity results for 2D one-phase or two-phase free boundary problems considering Alt-Caffarelli or Alt-Caffarelli-Friedman functionals with variable coefficients. For the one-phase case, they consider the energy functional \(J_{OP}(u,x_{0},r)=\int_{B_{r}(x_{0})}(\sum_{i,j}a_{ij}(x)\frac{\partial u}{\partial x_{i}}\frac{\partial u}{\partial x_{j}}+Q_{OP}(x)\mathbf{1}_{\{u>0\}})dx\) for \(u\in H^{1}(B_{2})\), \(x_{0}\in B_{1}\), \(r\in (0,1)\). Here \(A=(a_{ij})\) is a symmetric matrix of Hölder continuous functions satisfying uniform continuity and coercivity conditions on \(B_{2}\) and \(Q_{OP}\) is a Hölder continuous function which is bounded from above and from below on \(B_{2}\). The authors define the admissible set as \(\mathcal{A}^{+}(B_{r})=\{u\in H^{1}(B_{r}):u\geq 0\) in \(B_{r}\), \(u=0\) on \(B_{r}\setminus B_{r}^{+}\}\), where \(B_{r}^{+}=B_{r}\cap H\), \(H\) being the upper half-plane. They define an almost-minimizer in the upper half-disk \(B_{2}^{+}\) as a function \(u\in\mathcal{A}^{+}(B_{2})\) such that there exist positive constants \(r_{1}\), \(C_{1}\), \(\delta _{1}\) such that for every \(x_{0}\in B_{1}\cap \partial \Omega _{u}\) and \(r\in (0,r_{1})\) \(J_{OP}(u,x_{0},r)\leq (1+C_{1}r^{\delta_{1}})J_{OP}(v,x_{0},r)+C_{1}r^{2+\delta _{1}}\), for every \(v\in \mathcal{A}^{+}(B_{2})\) satisfying \(u=v\)on \(B_{2}\setminus B_{r}(x_{0})\). The main result here proves that if \(u\) is an almost-minimizer of \(J_{OP}\) the free boundary \(B_{1}\cap \partial \Omega _{u}\) is locally the graph of a \(C^{1,\alpha }\)-function. Moreover \(u\) satisfies optimality conditions. For the two-phase case, the authors consider the energy functional \(J_{TP}(u,x_{0},r)=\int_{B_{r}(x_{0})}(\sum_{i,j}a_{ij}(x)\frac{\partial u}{\partial x_{i}}\frac{\partial u}{\partial x_{j}}+Q_{TP}^{+}(x)\mathbf{1}_{\{u>0\}}+Q_{TP}^{-}(x)\mathbf{1}_{\{u<0\}})dx\) for \(u\in H^{1}(B_{2})\), \(x_{0}\in B_{1}\), \(r\in (0,1)\), were \(Q_{TP}^{+}\) and \(Q_{TP}^{-}\) satisfy similar hypotheses as \(Q_{OP}\). They define an almost-minimizer in \(B_{2}\) as a function \(u\in H^{1}(B_{2})\) such that there exist positive constants \( r_{2}\), \(C_{2}\), \(\delta _{2}\) such that for every \(x_{0}\in B_{1}\cap \partial \Omega _{u}\) and \(r\in (0,r_{2})\) \(J_{TP}(u,x_{0},r)\leq (1+C_{2}r^{\delta _{2}})J_{TP}(v,x_{0},r)+C_{2}r^{2+\delta _{2}}\), for every \(v\in H^{1}(B_{2})\) satisfying \(u=v\)on \(B_{2}\setminus B_{r}(x_{0})\). The main result here proves that if \(u\) is a Lipschitz continuous function such that \(u_{\pm }\) are solutions of \(-\operatorname{div}(A\nabla u^{\pm })=f_{\pm }\) in \(\Omega _{u}^{\pm }\cap B_{2}\), where \(f_{\pm }\) are bounded and continuous, and \(u\) is an almost-minimizer of \(J_{TP}\) the free boundaries \(B_{1}\cap \partial \Omega _{u}^{+}\) and \(B_{1}\cap \partial \Omega _{u}^{-}\) are locally the graphs of \(C^{1,\alpha }\)-functions. Moreover \(u\) satisfies optimality conditions on \(\partial \Omega _{u}^{+}\). Here the authors assume that the matrix \(A\) has \(C^{1}\)-regular coefficients. In the two cases, the authors first define Weiss’ boundary adjusted energy functionals for which they prove epiperimetric inequalities. Considering a Lipschitz continuous function \(u\in H^{1}(B_{2})\), a sequence \((x_{n})_{n}\) of points in \( B_{1}\cap \partial \Omega _{u}^{-}\) which converges to some \(x_{0}\in B_{1}\cap \partial \Omega _{u}^{-}\) and a sequence \((r_{n})_{n}\) in \((0,1)\), the authors call \(u_{x_{n},r_{n}}\) a blow-up sequence observe and they that \( u_{x_{n},r_{n}}\) is uniformly-Lipschitz in every compact subset of \(\mathbb{R }^{2}\). They analyze the convergence of blow-up sequences and they prove different properties of the blow-up limits, in the case of an almost-minimizer of the one-phase or two-phase problems. They also define the notion of global solution in both cases. For the proof of the regularity result in both cases, the authors prove, for every \(x_{0}\in B_{1}\cap \partial \Omega _{u}^{-}\), the existence of a unique blow-up limit \(u_{x_{n}} \) of the almost-minimizer \(u\) at \(x_{0}\) and they prove some flatness estimate for the free-boundary.

MSC:

35R35 Free boundary problems for PDEs
49Q10 Optimization of shapes other than minimal surfaces
49N60 Regularity of solutions in optimal control
47A75 Eigenvalue problems for linear operators

References:

[1] Spolaor, L.; Velichkov, B., An epiperimetric inequality for the regularity of some free boundary problems: the 2-dimensional case, Comm. Pure Appl. Math. Math., 72, 2, 375-421 (2019) · Zbl 1429.35214 · doi:10.1002/cpa.21785
[2] David, G.; Engelstein, M.; Toro, T., Free boundary regularity for almost-minimizers, Preprint ArXiv (2017)
[3] Bogosel, B.; Velichkov, B., Multiphase optimization problems for eigenvalues: Qualitative properties and numerical results, SIAM J. Numer. Anal. Anal., 54, 1, 210-241 (2016) · Zbl 1334.49128 · doi:10.1137/140976406
[4] Caffarelli, L.; Shahgholian, H.; Yeressian, K., A minimization problem with free boundary related to a cooperative system, Duke Math. J., 167, 10, 1825-1882 (2018) · Zbl 1395.35226 · doi:10.1215/00127094-2018-0007
[5] Kriventsov, D.; Lin, F., Regularity for shape optimizers: the nondegenerate case, Comm. Pure Appl. Math. Math., 71, 8, 1535-2596 (2018) · Zbl 1404.49026 · doi:10.1002/cpa.21743
[6] Kriventsov, D.; Lin, F., Regularity for shape optimizers: the degenerate case, Preprint Arxiv (2018) · Zbl 1404.49026
[7] Mazzoleni, D.; Terracini, S.; Velichkov, B., Regularity of the optimal sets for some spectral functionals, Geom. Funct. Anal. Anal., 27, 2, 373-426 (2017) · Zbl 1368.49047 · doi:10.1007/s00039-017-0402-2
[8] Bucur, D.; Velichkov, B., Multiphase shape optimization problems, SIAM J. Control Optim. Optim., 52, 6, 3556-3591 (2014) · Zbl 1312.49050 · doi:10.1137/130917272
[9] Bucur, D.; Mazzoleni, D.; Pratelli, A.; Velichkov, B., Lipschitz regularity of the eigenfunctions on optimal domains, Arch. Rational Mech. Anal. Anal., 216, 1, 117-151 (2015) · Zbl 1319.49067 · doi:10.1007/s00205-014-0801-6
[10] Briançon, T.; Lamboley, J., Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire., 26, 4, 1149-1163 (2009) · Zbl 1194.49059 · doi:10.1016/j.anihpc.2008.07.003
[11] Bucur, D.; Buttazzo, G.; Velichkov, B., Spectral optimization problems with internal constraint, Ann. I. H. Poincare., 30, 3, 477-495 (2013) · Zbl 1287.49049 · doi:10.1016/j.anihpc.2012.10.002
[12] Bucur, D.; Buttazzo, G., Progress in Nonlinear Differential Equations, 65, Variational Methods in Shape Optimization Problems (2005), Birkhäuser Verlag: Birkhäuser Verlag, Basel · Zbl 1117.49001
[13] Henrot, A.; Pierre, M., Mathématiques & Applications., 48, Variation et Optimisation de Formes. Une Analyse Géométrique (2005), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1098.49001
[14] Alt, H. W.; Caffarelli, L. A., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 1081, 105-144 · Zbl 0449.35105
[15] David, G.; Toro, T., Regularity for almost minimizers with free boundary, Calc. Var. Var., 54, 1, 455-524 (2015) · Zbl 1378.35337 · doi:10.1007/s00526-014-0792-z
[16] De Silva, D.; Savin, O.
[17] Chang-Lara, H.; Savin, O., Boundary regularity for the free boundary in the one-phase problem, Preprint ArXiv (2017)
[18] De Silva, D., Free boundary regularity from a problem with right hand side, Interface Free Boundaries., 13, 2, 223-238 (2011) · Zbl 1219.35372
[19] Alt, H. W.; Caffarelli, L. A.; Friedman, A., Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282, 2, 431-461 (1984) · Zbl 0844.35137 · doi:10.2307/1999245
[20] Velichkov, B., A note on the monotonicity formula of Caffarelli-Jerison-Kenig, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Appl., 25, 2, 165-189 (2014) · Zbl 1297.49066 · doi:10.4171/RLM/673
[21] Weiss, G. S., Partial regularity for a minimum problem with free boundary, J. Geom. Anal. Anal., 9, 2, 317-326 (1999) · Zbl 0960.49026 · doi:10.1007/BF02921941
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.