×

\(\mathbb{F}_{1}\) for everyone. (English) Zbl 1430.14005

The article contains a very nice and lucidly written introduction to the various approaches and algebraic and geometrical concepts connected with the so-called “field with one element”, denoted by \(\mathbb{F}_1\) (which, in the author’s words, “in most cases [...] is not a field and has two elements”). It is aimed at a general mathematical audience but assumes a basic background in algebraic geometry.
After a short introduction in Section 1, Section 2 reports on the history, Section 3 on various approaches, and Section 4 on the impact of the topic. Problem areas guiding the reader through the article are the interplay between algebraic and combinatorial geometry (as envisioned by J. Tits in [in: Centre Belge Rech. math., Colloque d’Algèbre supérieure, Bruxelles du 19 au 22 déc. 1956, 261–289 (1957; Zbl 0084.15902)]) and some of the efforts that went towards attempts for proving the Riemann hypothesis (in particular, trying to transfer the proof of the Hasse-Weil theorem from function fields to the case of \(\mathbb{Q}\)). Section 4 also discusses some relevant aspects of and recent developments in tropical geometry.
The article is written in a conversational, yet stringent and clearly presented tone, and thus makes for great recreational reading, as well as serving as a overview of and introduction to both classical and more recent developments in the field.

MSC:

14A23 Geometry over the field with one element
11G25 Varieties over finite and local fields
14A15 Schemes and morphisms
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14T25 Arithmetic aspects of tropical varieties

Citations:

Zbl 0084.15902

References:

[1] Artin, M., Bertin, J.E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.-P.: Schémas en groupes II: groupes de type multiplicatif, et structure des Schémas en groupes généraux. Lecture Notes in Mathematics, vol. 152. Springer, Berlin (1962)
[2] Artin, M., Bertin, J.E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.-P.: Schémas en groupes III: structure des schémas en groupes réductifs. Lecture Notes in Mathematics, vol. 153. Springer, Berlin (1962)
[3] Berkovich, V.G.: Analytic geometry over \(\mathbb{F}_{1}\). Slides. Online available at http://www.wisdom.weizmann.ac.il/ vova/Padova-slides_2011.pdf (2011)
[4] Borger, J.: \(\varLambda\)-rings and the field with one element. arXiv:0906.3146 (2009)
[5] Borwein, P., Choi, S., Rooney, B., Weirathmueller, A. (eds.): The Riemann Hypothesis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2008). A resource for the afficionado and virtuoso alike · Zbl 1132.11047
[6] Chu, C.; Lorscheid, O.; Santhanam, R., Sheaves and \(K\)-theory for \(\mathbb{F}_{1}\)-schemes, Adv. Math., 229, 2239-2286, (2012) · Zbl 1288.19004 · doi:10.1016/j.aim.2011.12.023
[7] Connes, A.; Consani, C., From monoids to hyperstructures: in search of an absolute arithmetic, 147-198, (2010), Berlin · Zbl 1234.14002
[8] Connes, A.; Consani, C., Schemes over \(\mathbb{F}_{1}\) and zeta functions, Compos. Math., 146, 1383-1415, (2010) · Zbl 1201.14001 · doi:10.1112/S0010437X09004692
[9] Connes, A.; Consani, C., The hyperring of adèle classes, J. Number Theory, 131, 159-194, (2011) · Zbl 1221.14002 · doi:10.1016/j.jnt.2010.09.001
[10] Connes, A.; Consani, C., On the notion of geometry over \(\mathbb{F}_{1}\), J. Algebraic Geom., 20, 525-557, (2011) · Zbl 1227.14006 · doi:10.1090/S1056-3911-2010-00535-8
[11] Connes, A.; Consani, C., Universal thickening of the field of real numbers, No. 77, 11-74, (2015), Toronto · Zbl 1387.11086 · doi:10.1007/978-1-4939-3201-6_2
[12] Connes, A.; Consani, C., Geometry of the arithmetic site, Adv. Math., 291, 274-329, (2016) · Zbl 1368.14038 · doi:10.1016/j.aim.2015.11.045
[13] Connes, A.; Consani, C., Geometry of the scaling site, Sel. Math. New Ser., 23, 1803-1850, (2017) · Zbl 1406.11118 · doi:10.1007/s00029-017-0313-y
[14] Connes, A.; Consani, C.; Marcolli, M., Fun with \(\mathbb{F}_{1}\), J. Number Theory, 129, 1532-1561, (2009) · Zbl 1228.11143 · doi:10.1016/j.jnt.2008.08.007
[15] Cortiñas, G.; Haesemeyer, C.; Walker, M.E.; Weibel, C., Toric varieties, monoid schemes and cdh descent, J. Reine Angew. Math., 698, 1-54, (2015) · Zbl 1331.14050 · doi:10.1515/crelle-2012-0123
[16] Deitmar, A., Schemes over \(\mathbb{F}_{1}\). in number fields and function fields—two parallel worlds, No. 239, 87-100, (2005), Boston · Zbl 1098.14003
[17] Deitmar, A., Remarks on zeta functions and \(K\)-theory over \({\mathbb{F}}_{1}\), Proc. Jpn. Acad., Ser. A, Math. Sci., 82, 141-146, (2006) · Zbl 1173.14004 · doi:10.3792/pjaa.82.141
[18] Deitmar, A., \(\mathbb{F}_{1}\)-schemes and toric varieties, Beitr. Algebra Geom., 49, 517-525, (2008) · Zbl 1152.14001
[19] Deitmar, A.: Congruence schemes. arXiv:1102.4046 (2011) · Zbl 1297.14005
[20] Deninger, C., On the \(\varGamma\)-factors attached to motives, Invent. Math., 104, 245-261, (1991) · Zbl 0739.14010 · doi:10.1007/BF01245075
[21] Deninger, C., Local \(L\)-factors of motives and regularized determinants, Invent. Math., 107, 135-150, (1992) · Zbl 0762.14015 · doi:10.1007/BF01231885
[22] Durov, N.: New approach to arakelov geometry. Thesis. arXiv:0704.2030 (2007) · Zbl 1141.14301
[23] Flores, J.; Lorscheid, O.; Szczesny, M., Čech cohomology over \(\mathbb{F}_{1^{2}}\), J. Algebra, 485, 269-287, (2017) · Zbl 1423.14123 · doi:10.1016/j.jalgebra.2017.04.029
[24] Giansiracusa, J., Giansiracusa, N.: The universal tropicalization and the Berkovich analytification. arXiv:1410.4348 (2014) · Zbl 1171.57033
[25] Giansiracusa, J.; Giansiracusa, N., Equations of tropical varieties, Duke Math. J., 165, 3379-3433, (2016) · Zbl 1409.14100 · doi:10.1215/00127094-3645544
[26] Haran, M.J.S., Non-additive geometry, Compos. Math., 143, 618-688, (2007) · Zbl 1213.11132 · doi:10.1112/S0010437X06002624
[27] Haran, M.J.S., New foundations for geometry-two non-additive languages for arithmetic geometry, Mem. Am. Math. Soc., 246, 200, (2017) · Zbl 1461.14001
[28] Haran, S.M.J., Invitation to nonadditive arithmetical geometry, 249-265, (2010), Berlin · Zbl 1223.11082
[29] Hasse, H.: Zur Theorie der abstrakten elliptischen Funktionenkörper III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung. J. Reine Angew. Math. 175, 193-208 (1936) · Zbl 0014.24902
[30] Jun, J.: Algebraic geometry over hyperrings. arXiv:1512.04837 (2015) · Zbl 1420.14005
[31] Kajiwara, T., Tropical toric geometry, No. 460, 197-207, (2008), Providence · Zbl 1202.14047 · doi:10.1090/conm/460/09018
[32] Kapranov, M., Smirnov, A.: Cohomology determinants and reciprocity laws: number field case. Unpublished preprint (1995) · Zbl 1273.14005
[33] Kato, K., Toric singularities, Am. J. Math., 116, 1073-1099, (1994) · Zbl 0832.14002 · doi:10.2307/2374941
[34] Kurokawa, N., Multiple zeta functions: an example, Tokyo, 1990, Tokyo · Zbl 0795.11037
[35] Lescot, P., Absolute algebra, II: ideals and spectra, J. Pure Appl. Algebra, 215, 1782-1790, (2011) · Zbl 1243.06013 · doi:10.1016/j.jpaa.2010.10.019
[36] Lescot, P., Absolute algebra, III: the saturated spectrum, J. Pure Appl. Algebra, 216, 1004-1015, (2012) · Zbl 1271.06014 · doi:10.1016/j.jpaa.2011.10.031
[37] López Peña, J.; Lorscheid, O., Mapping \(\mathbb{F}_{1}\)-land: an overview of geometries over the field with one element, 241-265, (2011), Baltimore · Zbl 1271.14003
[38] López Peña, J.; Lorscheid, O., Torified varieties and their geometries over \(\mathbb{F}_{1}\), Math. Z., 267, 605-643, (2011) · Zbl 1220.14021 · doi:10.1007/s00209-009-0638-0
[39] López Peña, J.; Lorscheid, O., Projective geometry for blueprints, C. R. Math. Acad. Sci. Paris, 350, 455-458, (2012) · Zbl 1273.14005 · doi:10.1016/j.crma.2012.05.001
[40] Lorscheid, O., Algebraic groups over the field with one element, Math. Z., 271, 117-138, (2012) · Zbl 1261.14024 · doi:10.1007/s00209-011-0855-1
[41] Lorscheid, O., The geometry of blueprints, part I: algebraic background and scheme theory, Adv. Math., 229, 1804-1846, (2012) · Zbl 1259.14001 · doi:10.1016/j.aim.2011.12.018
[42] Lorscheid, O.: The geometry of blueprints, part II: Tits-Weyl models of algebraic groups. arXiv:1201.1324 (2012) · Zbl 1259.14001
[43] Lorscheid, O., Blueprints—towards absolute arithmetic?, J. Number Theory, 144, 408-421, (2014) · Zbl 1296.11081 · doi:10.1016/j.jnt.2014.04.006
[44] Lorscheid, O.: Scheme theoretic tropicalization. arXiv:1508.07949 (2015)
[45] Lorscheid, O.; Thas, K. (ed.), A blueprinted view on \(\mathbb{F}_{1}\)-geometry, (2016), Zurich · Zbl 1351.11041
[46] Lorscheid, O., Blue schemes, semiring schemes, and relative schemes after toën and vaquié, J. Algebra, 482, 264-302, (2017) · Zbl 1401.14015 · doi:10.1016/j.jalgebra.2017.03.023
[47] Maclagan, D., Rincón, F.: Tropical schemes, tropical cycles, and valuated matroids. arXiv:1401.4654 (2014)
[48] Maclagan, D., Rincón, F.: Tropical ideals. arXiv:1609.03838 (2016) · Zbl 1152.14001
[49] Manin, Y.I., Lectures on zeta functions and motives (according to deninger and Kurokawa), Astérisque, 228, 121-163, (1995) · Zbl 0840.14001
[50] Mikhalkin, G., Real algebraic curves, the moment map and amoebas, Ann. Math. (2), 151, 309-326, (2000) · Zbl 1073.14555 · doi:10.2307/121119
[51] Mochizuki, S.: Inter-universal Teichmüller theory I-IV. Preprint (2012)
[52] Mochizuki, S., Topics in absolute Anabelian geometry, III: global reconstruction algorithms, J. Math. Sci. Univ. Tokyo, 22, 939-1156, (2015) · Zbl 1358.14024
[53] Nash, J.F. Jr., Rassias, M.Th. (eds.): Open Problems in Mathematics. Springer, Cham (2016) · Zbl 1351.00027
[54] Payne, S., Analytification is the limit of all tropicalizations, Math. Res. Lett., 16, 543-556, (2009) · Zbl 1193.14077 · doi:10.4310/MRL.2009.v16.n3.a13
[55] Rousseau, G.: Les immeubles, une théorie de Jacques Tits, prix Abel 2008. Gaz. Math. 121, 47-64 (2008) · Zbl 1239.01058
[56] Smirnov, A., Hurwitz inequalities for number fields, Algebra Anal., 4, 186-209, (1992) · Zbl 0794.11042
[57] Soulé, C., On the field with one element, (1999) · Zbl 1012.11094
[58] Soulé, C.: Les variétés sur le corps à un élément. Mosc. Math. J. 4(1), 217-244 (2004). 312 · Zbl 1103.14003
[59] Soulé, C., Lectures on algebraic varieties over \(\mathbb{F}_{1}\), 267-277, (2011), Baltimore · Zbl 1271.14004
[60] Takagi, S.: Compactifying \(\operatorname{Spec} \mathbb{Z}\). arXiv:1203.4914 (2012)
[61] Tits, J., Sur LES analogues algébriques des groupes semi-simples complexes, 261-289, (1957), Louvain · Zbl 0084.15902
[62] Tits, J.: Normalisateurs de tores, i: groupes de Coxeter étendus. J. Algebra 4, 96-116 (1966) · Zbl 0145.24703 · doi:10.1016/0021-8693(66)90053-6
[63] Toën, B., Vaquié, M.: Au-dessous de \(\operatorname{Spec}\mathbb{Z}\). J. K-Theory 3(3), 437-500 (2009) · Zbl 1177.14022 · doi:10.1017/is008004027jkt048
[64] Weil, A., Sur LES courbes algébriques et LES variétés qui s’en déduisent, No. 7, 1041, (1945), Paris · Zbl 0036.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.