×

Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. (English) Zbl 1429.49031

Optimal control problems are considered for systems described by nonlinear fractional evolution inclusions on Banach spaces. Existence of optimal solutions is proved. The continuity of the set of optimal state-control pairs and the optimal value function is established with respect to the initial state and a parameter in the dynamics. A version of Filippov’s theorem is also proved.

MSC:

49K40 Sensitivity, stability, well-posedness
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
49K20 Optimality conditions for problems involving partial differential equations
49K27 Optimality conditions for problems in abstract spaces

References:

[1] J.P. Aubin, A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984).; Aubin, J. P.; Cellina, A., Differential Inclusions (1984) · Zbl 0538.34007
[2] E. Balder, Necessary and sufficient conditions for \(L^1\)-strong-weak lower semicontinuity of integral functional. Nonlinear Anal.: RWA11 (1987), 1399-1404.; Balder, E., Necessary and sufficient conditions for \(L^1\)-strong-weak lower semicontinuity of integral functional, Nonlinear Anal.: RWA, 11, 1399-1404 (1987) · Zbl 0638.49004
[3] D. Baleanu, A.K. Golmankhaneh, On electromagnetic field in fractional space. Nonlinear Anal.: RWA11, No 1 (2010), 288-292.; Baleanu, D.; Golmankhaneh, A. K., On electromagnetic field in fractional space, Nonlinear Anal.: RWA, 11, 1, 288-292 (2010) · Zbl 1196.35224
[4] J. Banas, K. Goebal, Measure of Noncompactness in Banach Spaces. Marcel Dekker Inc., New York (1980).; Banas, J.; Goebal, K., Measure of Noncompactness in Banach Spaces (1980) · Zbl 0438.47051
[5] I. Benedetti, N.V. Loi, L. Malaguti, Nonlocal problems for differential inclusions in Hilbert spaces. Set-Valued Var. Anal. 22 (2014), 639-656.; Benedetti, I.; Loi, N. V.; Malaguti, L., Nonlocal problems for differential inclusions in Hilbert spaces, Set-Valued Var. Anal., 22, 639-656 (2014) · Zbl 1312.34097
[6] I. Benedetti, L. Malaguti, V. Taddei, Semilinear evolution equations in abstract spaces and applications. Rend. Istit. Mat. Univ. Trieste44 (2012), 371-388.; Benedetti, I.; Malaguti, L.; Taddei, V., Semilinear evolution equations in abstract spaces and applications, Rend. Istit. Mat. Univ. Trieste, 44, 371-388 (2012) · Zbl 1272.34084
[7] Y. Cheng, R.P. Agarwal, D. O’Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlinear boundary conditions and time-varying delay. Fract. Calc. Appl. Anal. 21, No 4 (2018), 960-980; ; .; Cheng, Y.; Agarwal, R. P.; O’Regan, D., Existence and controllability for nonlinear fractional differential inclusions with nonlinear boundary conditions and time-varying delay, Fract. Calc. Appl. Anal., 21, 4, 960-980 (2018) · Zbl 1420.93008 · doi:10.1515/fca-2018-0053
[8] Z. Denkowski, S. Migórski, N. Papageorgiu, An Introduction to Nonlinear Analysis (Theory). Kluwer Academic/Plenum Publishers, Boston (2003).; Denkowski, Z.; Migórski, S.; Papageorgiu, N., An Introduction to Nonlinear Analysis (Theory) (2003) · Zbl 1040.46001
[9] H. Frankowska, A priori estimates for operational differential inclusions. J. Diff. Equat. 84 (1990), 100-128.; Frankowska, H., A priori estimates for operational differential inclusions, J. Diff. Equat., 84, 100-128 (1990) · Zbl 0705.34016
[10] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis (Theory). Kluwer Acad. Publishers, Dordrecht-Boston- London (1997).; Hu, S.; Papageorgiou, N. S., Handbook of Multivalued Analysis (Theory) (1997) · Zbl 0887.47001
[11] K. Ito, K. Kunisch, Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation. J. Diff. Equat. 99 (1992), 1-40.; Ito, K.; Kunisch, K., Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation, J. Diff. Equat., 99, 1-40 (1992) · Zbl 0790.49028
[12] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin (2001).; Kamenskii, M.; Obukhovskii, V.; Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces (2001) · Zbl 0988.34001
[13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Ser. North-Holland Mathematics Studies # 204, Elservier Science B.V., Amsterdam (2006).; Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006) · Zbl 1092.45003
[14] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677-2682.; Lakshmikantham, V.; Vatsala, A. S., Basic theory of fractional differential equations, Nonlinear Anal., 69, 2677-2682 (2008) · Zbl 1161.34001
[15] J. Li, F.Liu, L. Feng, I. Turner, A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74 (2017), 772-783.; Li, J.; Liu, F.; Feng, L.; Turner, I., A novel finite volume method for the Riesz space distributed-order diffusion equation, Comput. Math. Appl., 74, 772-783 (2017) · Zbl 1384.65059
[16] X.W. Li, Z.H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim. 56, No 5 (2018), 3569-3597.; Li, X. W.; Liu, Z. H., Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim., 56, 5, 3569-3597 (2018) · Zbl 1400.49026
[17] X.Y. Liu, Z.H. Liu, X. Fu, Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, No 1 (2014), 446-458.; Liu, X. Y.; Liu, Z. H.; Fu, X., Relaxation in nonconvex optimal control problems described by fractional differential equations, J. Math. Anal. Appl., 409, 1, 446-458 (2014) · Zbl 1311.49033
[18] Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 53, No 4 (2015), 1920-1933.; Liu, Z. H.; Li, X. W., Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 53, 4, 1920-1933 (2015) · Zbl 1326.34019
[19] Z.H. Liu, S.D. Zeng, Y.R. Bai, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188-211; ; .; Liu, Z. H.; Zeng, S. D.; Bai, Y. R., Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications, Fract. Calc. Appl. Anal., 19, 1, 188-211 (2016) · Zbl 1381.35225 · doi:10.1515/fca-2016-0011
[20] N.I. Mahmudov, Finite-approximate controllability of fractional evolution equations: variational approach. Fract. Calc. Appl. Anal. 21, No 4 (2018), 919-936; ; .; Mahmudov, N. I., Finite-approximate controllability of fractional evolution equations: variational approach, Fract. Calc. Appl. Anal., 21, 4, 919-936 (2018) · Zbl 1420.93009 · doi:10.1515/fca-2018-0050
[21] F. Mainardi, On the initial value problem for the fractional diffusion-wave equation. Adv. Math. Appl. Sci. 23 (1994), 246-251.; Mainardi, F., On the initial value problem for the fractional diffusion-wave equation, Adv. Math. Appl. Sci., 23, 246-251 (1994)
[22] I. Matychyn, V. Onyshchenko, Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21, No 1 (2018), 134-150; ; .; Matychyn, I.; Onyshchenko, V., Optimal control of linear systems with fractional derivatives, Fract. Calc. Appl. Anal., 21, 1, 134-150 (2018) · Zbl 1396.49033 · doi:10.1515/fca-2018-0009
[23] S. Migórski, Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations. J. Optim. Theory Appl. 87 (1995), 595-613.; Migórski, S., Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations, J. Optim. Theory Appl., 87, 595-613 (1995) · Zbl 0834.49005
[24] S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Ser. Advances in Mechanics and Mathematics #26, Springer, New York (2013).; Migórski, S.; Ochal, A.; Sofonea, M., Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems (2013) · Zbl 1262.49001
[25] N.S. Papageorgiou, Sensitivity analysis of evolution inclusions and its applications to the variational stability of optimal control problems. Houston J. Math. 16 (1990), 509-522.; Papageorgiou, N. S., Sensitivity analysis of evolution inclusions and its applications to the variational stability of optimal control problems, Houston J. Math., 16, 509-522 (1990) · Zbl 0721.49028
[26] N.S. Papageorgiou, On the variational stability of a class of nonlinear parabolic optimal control problems. Zeitsch. Anal. Anwend. 15 (1996), 245-262.; Papageorgiou, N. S., On the variational stability of a class of nonlinear parabolic optimal control problems, Zeitsch. Anal. Anwend., 15, 245-262 (1996) · Zbl 0844.49020
[27] N.S. Papageorgiou, S. Kyritsi, Handbook of Applied Analysis. Springer, New York (2009).; Papageorgiou, N. S.; Kyritsi, S., Handbook of Applied Analysis (2009) · Zbl 1189.49003
[28] N.S. Papageorgiou, V.D. Radulescu, D.D. Repovš, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions. Advances in Nonlinear Anal. 6, No 2 (2017), 199-235.; Papageorgiou, N. S.; Radulescu, V. D.; Repovš, D. D., Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions, Advances in Nonlinear Anal., 6, 2, 199-235 (2017) · Zbl 1365.49023
[29] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).; Podlubny, I., Fractional Differential Equations (1999) · Zbl 0918.34010
[30] H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075-1081.; Ye, H. P.; Gao, J. M.; Ding, Y. S., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003
[31] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063-1077.; Zhou, Y.; Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59, 1063-1077 (2010) · Zbl 1189.34154
[32] Q.J. Zhu, On the solution set of differential inclusions in Banach space. J. Diff. Equat. 93 (1991), 213-237.; Zhu, Q. J., On the solution set of differential inclusions in Banach space, J. Diff. Equat., 93, 213-237 (1991) · Zbl 0735.34017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.