×

Decompositions into spanning rainbow structures. (English) Zbl 1429.05024

In Graph Theory, a rainbow is any subgraph of an edge-coloured graph whose edges have all of them distinct colours. This paper deals with the problem of finding disjoint rainbow perfect matchings within an \(n\)-edge-coulored complete bipartite graph \(K_{n,n}\). This problem is equivalent to find disjoint transversal within generalized Latin squares. Recall in this regard that a generalized Latin square of order \(n\) is an \(n\times n\) array whose cells are filled with an arbitrary number of symbols such that no symbol appears twice in the same row or column. This is a Latin square when each cell contains precisely one symbol. Further, a transversal is any set of \(n\) cells within a generalized Latin square of order \(n\) that do not share the same row, column or symbol.
The main theorem of the paper indicates that every generalized Latin square with at most \((1-o(1))n\) symbols occurring more than \((1-o(n))\) times, has \((1-o(1))n\) pairwise disjoint transversals. As a corollary, the authors prove that, for all \(\varepsilon>0\) and \(n\) sufficiently large, every generalized Latin square with at least \(\varepsilon n^2\) symbols has \((1-\varepsilon)n\) pairwise disjoint transversals. This last result confirms that every generalized Latin square with at least \(n^2/2\) symbols has a transversal (which was conjectured by S. Akbari and A. Alipour [J. Comb. Des. 12, No. 5, 325–332 (2004; Zbl 1053.05017)]), and asymptotically that, under such a condition, a decomposition into disjoint transversals is always possible (which was conjectured by J. Barát and Z. L. Nagy [Ars Math. Contemp. 16, No. 1, 39–47 (2019; Zbl 1416.05054)]). Another consequence of the main theorem of the paper is that partial transversals of size \(n-o(n)\) must occur almost everywhere within a Latin square. Furthermore, it has also implications in the existence of transversals in certain subsquares of multiplication tables.
Concerning the implications of the main theorem in graph theory, the authors prove a series of results dealing with the decomposition of any properly coloured complete graph into disjoint rainbow Hamiltonian cycles and also into disjoint rainbow spanning trees. In particular, they prove the existence of a positive real number \(\alpha>0\) satisfying that every properly coloured complete graph \(K_n\) has \((1-\varepsilon)n/2\) edge-disjoint spanning rainbow trees, for all \(1>\varepsilon\geq n^{-\alpha}/\alpha\). This result constitutes an asymptotic version of the conjecture of R. A. Brualdi and S. Hollingsworth [J. Comb. Theory, Ser. B 68, No. 2, 310–313 (1996; Zbl 0861.05020)], ensuring that every properly \((2n-1)\)-coloured complete graph \(K_{2n}\) can be decomposed into edge-disjoint rainbow spanning trees, and also of the conjecture of A. Kaneko, M. Kano and K. Suzuki [“Three edge disjoint multicolored spanning trees in complete graphs”, Preprint] indicating that every properly coloured complete graph \(K_n\) contains \(\lfloor n/2\rfloor\) edge-disjoint rainbow spanning trees.

MSC:

05B15 Orthogonal arrays, Latin squares, Room squares
05C45 Eulerian and Hamiltonian graphs
05C80 Random graphs (graph-theoretic aspects)
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
05C05 Trees
05D15 Transversal (matching) theory

References:

[1] S.Akbari and A.Alipour, ‘Transversals and multicolored matchings’, J. Combin. Des.12 (2004) 325-332. · Zbl 1053.05017
[2] S.Akbari and A.Alipour, ‘Multicolored trees in complete graphs’, J. Graph Theory54 (2007) 221-232. · Zbl 1112.05034
[3] S.Akbari, O.Etesami, H.Mahini and M.Mahmoody, ‘On rainbow cycles in edge colored complete graphs’, Australas. J. Combin.37 (2007) 33. · Zbl 1130.05024
[4] N.Alon, ‘Additive Latin transversals’, Israel J. Math.117 (2000) 125-130. · Zbl 1047.11019
[5] N.Alon, M.Krivelevich and B.Sudakov, ‘List coloring of random and pseudo‐random graphs’, Combinatorica19 (1999) 453-472. · Zbl 0985.05046
[6] N.Alon, A.Pokrovskiy and B.Sudakov, ‘Random subgraphs of properly edge‐coloured complete graphs and long rainbow cycles’, Israel J. Math.222 (2017) 317-331. · Zbl 1378.05180
[7] N.Alon and J.Spencer, The probabilistic method, 4th edn (John Wiley & Sons, Hoboken, NJ, 2004).
[8] N.Alon, J.Spencer and P.Tetali, ‘Covering with Latin transversals’, Discrete Appl. Math.57 (1995) 1-10. · Zbl 0817.05018
[9] L.Andersen, ‘Hamilton circuits with many colours in properly edge‐coloured complete graphs’, Math. Scand. (1989) 5-14. · Zbl 0665.05028
[10] B.Arsovski, ‘A proof of Snevily’s conjecture’, Israel J. Math.182 (2011) 505-508. · Zbl 1241.20061
[11] R. C.Baker and G.Harman, ‘The difference between consecutive primes’, Proc. Lond. Math. Soc. (3) 3 (1996) 261-280. · Zbl 0853.11076
[12] J.Balogh, H.Liu and R.Montgomery, ‘Rainbow spanning trees in properly coloured complete graphs’, Discrete Appl. Math.247 (2018) 97-101. · Zbl 1394.05028
[13] J.Barát and Z. L.Nagy, ‘Transversals in generalized Latin squares’, Ars Math. Contemp.16 (2018) 39-47. · Zbl 1416.05054
[14] R.Bose, S.Shrikhande and E.Parker, ‘Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture’, Canad. J. Math.12 (1960) 189-203. · Zbl 0093.31905
[15] A.Brouwer, A.de Vries and R.Wieringa, ‘A lower bound for the length of partial transversals in a Latin square’, Nieuw Arch. Wiskd. (5) 26 (1978) 330. · Zbl 0395.05012
[16] R. A.Brualdi and S.Hollingsworth, ‘Multicolored trees in complete graphs’, J. Combin. Theory Ser. B68 (1996) 310-313. · Zbl 0861.05020
[17] R. A.Brualdi and H. J.Ryser, Combinatorial matrix theory (Cambridge University Press, Cambridge, 1991). · Zbl 0746.05002
[18] J. M.Carraher, S. G.Hartke and P.Horn, ‘Edge‐disjoint rainbow spanning trees in complete graphs’, European J. Combin.57 (2016) 71-84. · Zbl 1339.05053
[19] H.Chen and X.Li, ‘Long rainbow path in properly edge‐colored complete graphs’, Preprint, 2015, arXiv:1503.04516.
[20] D.Christofides, D.Kühn and D.Osthus, ‘Edge‐disjoint Hamilton cycles in graphs’, J. Combin. Theory Ser. B102 (2012) 1035-1060. · Zbl 1251.05091
[21] G. M.Constantine, ‘Multicolored parallelisms of isomorphic spanning trees’, Discrete Math. Theor. Comput. Sci.5 (2002) 121-126. · Zbl 0994.68096
[22] S.Dasgupta, G.Károlyi, O.Serra and B.Szegedy, ‘Transversals of additive Latin squares’, Israel J. Math.126 (2001) 17-28. · Zbl 1011.05014
[23] P.Erdős and J.Spencer, ‘Lopsided Lovász local lemma and Latin transversals’, Discrete Appl. Math.30 (1991) 151-154. · Zbl 0717.05017
[24] L.Euler, ‘Recherches sur une nouvelle espéce de quarrés magiques’, Verh. Zeeuwsch. Gennot. Weten. Vliss.9 (1782) 85-239.
[25] J.Fournier, ‘Sharpness in young’s inequality for convolution’, Pacific J. Math.72 (1977) 383-397. · Zbl 0343.43005
[26] H.‐L.Fu, Y.‐H.Lo, K.Perry and C.Rodger, ‘On the number of rainbow spanning trees in edge‐colored complete graphs’, Discrete Math.341 (2018) 2343-2352. · Zbl 1388.05062
[27] H.Gebauer and F.Mousset, ‘On rainbow cycles and paths’, Preprint, 2012, arXiv:1207.0840.
[28] S.Glock, D.Kühn, R.Montgomery, D.Osthus, ‘Decompositions into isomorphic rainbow spanning trees’, Preprint, 2019, arXiv:1903.04262.
[29] B.Green and A.Wigderson, ‘Lecture notes for the 22nd McGill invitational workshop on computational complexity’, 2010, https://www.cs.mcgill.ca/denis/additive‐lectures‐v2.pdf.
[30] C.Greenhill, M.Isaev, M.Kwan and B. D.McKay, ‘The average number of spanning trees in sparse graphs with given degrees’, European J. Combin.63 (2017) 6-25. · Zbl 1365.05046
[31] A.Gyárfás and M.Mhalla, ‘Rainbow and orthogonal paths in factorizations of \(K_n\)’, J. Combin. Des.18 (2010) 167-176. · Zbl 1216.05112
[32] A.Gyárfás, M.Ruszinkó, G.Sárközy and R.Schelp, ‘Long rainbow cycles in proper edge‐colorings of complete graphs’, Australas. J. Combin.50 (2011) 45-53. · Zbl 1236.05082
[33] G.Hahn and C.Thomassen, ‘Path and cycle sub‐Ramsey numbers and an edge‐colouring conjecture’, Discrete Math.62 (1986) 29-33. · Zbl 0613.05044
[34] M.Hall and L.Paige, ‘Complete mappings of finite groups’, Pacific J. Math.5 (1955) 541-549. · Zbl 0066.27703
[35] P.Hatami and P. W.Shor, ‘A lower bound for the length of a partial transversal in a Latin square’, J. Combin. Theory Ser. A115 (2008) 1103-1113. · Zbl 1159.05303
[36] P.Horn, ‘Rainbow spanning trees in complete graphs colored by one‐factorizations’, J. Graph Theory87 (2018) 333-346. · Zbl 1386.05027
[37] A.Kaneko, M.Kano and K.Suzuki, ‘Three edge disjoint multicolored spanning trees in complete graphs’, Preprint, 2003.
[38] A.Keedwell and J.Dénes, Latin squares and their applications (Elsevier Science, Amsterdam, 2015). · Zbl 1318.05001
[39] P.Keevash and L.Yepremyan, ‘On the number of symbols that forces a transversal’, Preprint, 2018, arXiv:1805.10911.
[40] J.Kim, D.Kühn, A.Kupavskii and D.Osthus, ‘Rainbow structures in locally bounded colourings of graphs’, 2018, arXiv:1805.08424.
[41] O.Ore, Theory of graphs, vol. 38 (American Mathematical Society, Providence, RI, 1962). · Zbl 0105.35401
[42] A.Pokrovskiy, ‘Latin squares and rainbow subgraphs’, 2018, https://people.math.ethz.ch/ palexey/Slides/RainbowTreesPresentation.pdf.
[43] A.Pokrovskiy and B.Sudakov, ‘A counterexample to Stein’s equi‐n‐square conjecture’, Proc. Amer. Math. Soc.2018, to appear. · Zbl 1411.05041
[44] A.Pokrovskiy and B.Sudakov, ‘Linearly many rainbow trees in properly edge‐coloured complete graphs’, J. Combin. Theory Ser. B132 (2018) 134-156. · Zbl 1391.05116
[45] H.Ryser, ‘Neuere probleme der kombinatorik’, Vorträge über Kombinatorik (Mathematisches Forschungsinstitut, Oberwolfach, 1967) 69-91.
[46] H. J.Ryser, Combinatorial mathematics, vol. 14 (Mathematical Association of America, Washington, DC, 1963). (distributed by Wiley, New York) · Zbl 0112.24806
[47] W.Sierpinski, Elementary theory of numbers: second English edition, vol. 31 (ed. A.Schinzel (ed.); Elsevier, Amsterdam, 1988). · Zbl 0638.10001
[48] H. S.Snevily, ‘The Cayley addition table of \(Z_n\)’, Amer. Math. Monthly106 (1999) 584-585.
[49] S. K.Stein, ‘Transversals of Latin squares and their generalizations’, Pacific J. Math.59 (1975) 567-575. · Zbl 0302.05015
[50] S.Wilcox, ‘Reduction of the Hall-Paige conjecture to sporadic simple groups’, J. Algebra321 (2009) 1407-1428. · Zbl 1172.20024
[51] D.Woolbright, ‘An \(n \times n\) Latin square has a transversal with at least \(n - \sqrt{n}\) distinct symbols’, J. Combin. Theory Ser. A24 (1978) 235-237. · Zbl 0368.05012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.