×

Wave interaction with the defect characterized by nonlinearity of general form. (English. Russian original) Zbl 1428.78027

Russ. Phys. J. 62, No. 1, 1-11 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 62, No. 1, 3-12 (2019).
Summary: Possible types of stationary states and waves in linear media separated by a nonlinear interface are analyzed. The mathematical formulation of the model is reduced to a one-dimensional boundary value problem for the nonlinear Schrödinger equation. The nonlinearity of the equation in the form of an arbitrary function of the desired field is taken into account only inside the waveguide. It is shown that there are stationary states of three types for different ranges of propagation constant values. The dispersion dependences of the propagation constant as functions of the parameters of the medium and the interface have explicitly been obtained for stationary states of all types, and conditions of their existence have been indicated. It is shown that total wave transition through the interface is possible. It has been established that the total transition of wave through the interface with nonzero parameters can occur only if the nonlinear response of the medium is taken into account.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
35Q55 NLS equations (nonlinear Schrödinger equations)
78A48 Composite media; random media in optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
Full Text: DOI

References:

[1] Panyaev, IS; Sannikov, DG, No article title, Comp. Optics, 41, 183-191 (2017) · doi:10.18287/2412-6179-2017-41-2-183-191
[2] Yu. S. Kivshar and G. P. Agraval, Optical Solitons. From Fiber Light Guides to Photon Crystals, Academic Press, San Diego (2003).
[3] Yu. S. Kivshar and N. N. Rozanova, eds., Nonlinearity in Periodic Structures and Metamaterials: Collection of Articles [in Russian], Fizmatlit, Moscow (2014).
[4] Mikhalake, D.; Nazmitdinov, PG; Fedyanin, VK, No article title, Fiz. Elem. Chast. Atomn. Yadra, 20, 198-253 (1989)
[5] A. M. Kosevich and A. S. Kovalev, Introduction to Nonlinear Physical Mechanics [in Russian], Naukova Dumka, Kiev (1989). · Zbl 0734.70001
[6] A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984).
[7] Savotchenko, SE, No article title, Russ. Phys. J., 47, 556-562 (2004) · Zbl 1075.81519 · doi:10.1023/B:RUPJ.0000046330.92744.73
[8] Korovai, OV; Khadzhi, PI, No article title, Fiz. Tverd. Tela, 52, 2277-2282 (2010)
[9] Feodorov, LV; Lyakhomskaya, KD, No article title, Pis’ma Zh. Tekh. Fiz., 23, 36-39 (1997)
[10] Usievich, BA; Nurligareev, DK; Sychugov, VA; etal., No article title, Kvant. Elektr., 40, 437-440 (2010) · doi:10.1070/QE2010v040n05ABEH014223
[11] Sukhorukov, AA; Kivshar, YS, No article title, Phys. Rev. Lett., 87, 083901 (2001) · doi:10.1103/PhysRevLett.87.083901
[12] Akhmediev, NN; Korneyev, VI; Kuzmenko, YV, No article title, Zh. Eksp. Teor. Fiz., 88, 107-115 (1985)
[13] Bludov, YV; Smirnova, DA; Kivshar, YS; etal., No article title, Phys. Rev. B, 89, 035406 (2014) · doi:10.1103/PhysRevB.89.035406
[14] Kartashov, YV; Malomed, BA; Torner, L., No article title, Rev. Mod. Phys., 83, 247 (2011) · doi:10.1103/RevModPhys.83.247
[15] Gorentsveig, VI; Kivshar, YS; Kosevich, AM; Syrkin, ES, No article title, Fiz. Nizk. Temp., 16, 1472-1482 (1990)
[16] A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons, and Localized Structures in Magnetics. Vol. 1. Quasione-Dimensional Magnetic Solitons [in Russian], Ekaterinburg (2009).
[17] I. V. Gerasimchuk, I. Yu. Gorobets, and V. S. Gerasimchuk, J. Nano- Electron. Phys., 2, 02020-1-7 (2016).
[18] Savotchenko, SE, No article title, Cond. Matter and Interphases, 19, 567-572 (2017)
[19] S. E. Savotchenko, Proc. Voronezh State Univ. Ser. Phys. Mathem., No. 1, 44-52 (2018). · Zbl 1404.35421
[20] Savotchenko, SE, No article title, Russ. Phys. J., 44, 412-419 (2001) · doi:10.1023/A:1011952514072
[21] Savotchenko, SE, No article title, Cond. Matter and Interphases, 19, 291-295 (2017)
[22] Savotchenko, EE, No article title, Zh. Tekh. Ziz., 87, 1776-1781 (2017)
[23] Savotchenko, SE, No article title, Commun. Nonlinear Sci. Numer. Simulation, 63, 171-185 (2018) · Zbl 1509.35285 · doi:10.1016/j.cnsns.2018.03.013
[24] Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Zh. Eksp. Teor. Fiz., 93, No. 3 (9), 968-977 (1987).
[25] Kivshar, YS; Kosevich, AM; Chubykalo, OA, No article title, Phys. Rev. A, 41, 1677-1688 (1990) · doi:10.1103/PhysRevA.41.1677
[26] I. V. Gerasimchuk, J. Nano- Electron. Phys., 4, No. 4, 04024-1-4 (2012).
[27] Gerasimchuk, IV, No article title, Zh. Eksp. Teor. Fiz., 121, 596-605 (2015)
[28] Savotchenko, SE, No article title, Mod. Phys. Lett. B, 32, 1850120-12 (2018) · doi:10.1142/S0217984918501208
[29] Savotchenko, SE, No article title, Pis’ma Zh. Eksp. Teor. Fiz., 107, 481-483 (2018) · doi:10.7868/S0370274X18080027
[30] Savotchenko, SE, No article title, Cond. Matter and Interphases, 20, 255-262 (2018)
[31] P. V. Elyutin and V. D. Krivchenkov, Quantum Mechanics [in Russian], Fizmatlit, Moscow (2001).
[32] Tocci, MD; Bloemer, MJ; Scalora, M.; etal., No article title, Appl. Phys. Lett., 66, 2324-2326 (1995) · doi:10.1063/1.113970
[33] Lan, S.; Ishikawa, H., No article title, J. Appl. Phys., 91, 2573-2577 (2002) · doi:10.1063/1.1446225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.