×

Characterizations of Benson proper efficiency of set-valued optimization in real linear spaces. (English) Zbl 1427.90233

Summary: A new class of generalized convex set-valued maps termed relatively solid generalized cone-subconvexlike maps is introduced in real linear spaces not equipped with any topology. This class is a generalization of generalized cone-subconvexlike maps and relatively solid cone-subconvexlike maps. Necessary and sufficient conditions for Benson proper efficiency of set-valued optimization problem are established by means of scalarization, Lagrange multipliers, saddle points and duality. The results generalize and improve some corresponding ones in the literature. Some examples are afforded to illustrate our results.

MSC:

90C26 Nonconvex programming, global optimization
90C30 Nonlinear programming
90C46 Optimality conditions and duality in mathematical programming
Full Text: DOI

References:

[1] Borwein J.M., Proper efficient points for maximizations with respect to cones, SIAM J. Control. Optim., 1977, 15, 57-63. · Zbl 0369.90096
[2] Benson H.P., An improved definition of proper efficiency for vector maximization with respect to cones, J. Math. Anal. Appl., 1979, 71, 232-241. · Zbl 0418.90081
[3] Henig M.I., Proper efficiency with respect to cones, J. Optim. Theory Appl., 1982, 36, 387-407. · Zbl 0452.90073
[4] Borwein J.M., Zhuang D., Super efficiency in vector optimization., Trans. Am. Math. Soc., 1993, 338, 105-122. · Zbl 0796.90045
[5] Li S.J., Chen C.R., Higher order optimality conditions for Henig efficient solutions in set-valued optimization, J. Math. Anal. Appl., 2006, 323, 1184-1200. · Zbl 1144.90481
[6] Sun X.K., Li S.J., Stability analysis for higher-order adjacent derivative in parametrized vector optimization, J. Inequal. Appl., 2010, Article ID 510838, . · Zbl 1200.49029 · doi:10.1155/2010/510838
[7] Sun X.K., Li S.J., Lower Studniarski derivative of the perturbation map in parametrized vector optimization, Optim. Lett., 2011, 5, 601-614. · Zbl 1254.90220
[8] Sun X.K., Li S.J., Generalized second-order contingent epiderivatives in parametric vector optimization problems, J. Glob. Optim., 2014, 58, 351-363. · Zbl 1297.49027
[9] Wang Q.L., Li S.J., Teo K.L., Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization, Optim. Lett., 2010, 4, 425-437. · Zbl 1229.90261
[10] Wang Q.L., Li S.J., Teo K.L., Continuity of second-order adjacent derivatives for weak perturbation maps in vector optimization, Numer. Algebra Control Optim., 2011, 1, 417-433. · Zbl 1239.49037
[11] Wang Q.L., Li S.J., Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization, Optim. Lett., 2012, 6, 73-748. · Zbl 1280.90110
[12] Zeng J., Li S.J., Zhang W.Y., Xue X.W., Stability results for convex vector-valued optimization problems, Positivity, 2011, 15, 441-453. · Zbl 1234.49025
[13] Rong W.D., Wu Y.N., Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps, Math. Methods Oper. Res., 1998, 48, 247-258. · Zbl 0930.90078
[14] Li Z.F., Benson Proper efficiency in the vector optimization of set-valued maps, J. Optim. Theory Appl., 1998, 98, 623-649. · Zbl 0913.90235
[15] Li Z.M., A theorem of the alternative and its application to the optimization of set-valued maps, J. Optim. Theory Appl., 1999, 100, 365-375. · Zbl 0915.90253
[16] Yang X.M., Yang X.Q., Chen G.Y., Theorems of the alternative and optimization with set-valued maps, J. Optim. Theory Appl., 2000, 107, 627-640. · Zbl 0966.90071
[17] Yang X.M., Li D., Wang S. Y., Near-subconvexlikeness in vector optimization with set-valued functions, J. Optim. Theory Appl., 2001, 110, 413-427. · Zbl 1012.90061
[18] Sach P.H., New generalized convexity notion for set-valued maps and application to vector optimization, J. Optim. Theory Appl., 2005, 125, 157-179. · Zbl 1090.90174
[19] Li Z.M., The optimality conditions for vector optimization of set-valued maps, J. Math. Anal. Appl., 1999, 237, 413-424. · Zbl 0946.90078
[20] Adán M., Novo V., Partial and generalized subconvexity in vector optimization problems, J. Convex. Anal., 2001, 8, 583-594. · Zbl 1010.90057
[21] Adán M., Novo V., Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness, Eur. J. Oper. Res., 2003, 149, 641-653. · Zbl 1033.90113
[22] Adán M., Novo V., Proper efficiency in vector optimization on real linear spaces, J. Optim. Theory Appl., 2004, 121, 515-540. · Zbl 1076.90051
[23] Adán M., Novo V., Duality and saddle-points for convex-like vector optimization problems on real linear spaces, TOP, 2005, 13, 343-357. · Zbl 1112.90074
[24] Hernández E., Jimenez B., Novo V., Weak and proper efficiency in set-valued optimization on real linear spaces, J. Convex. Anal., 2007, 14, 275-296. · Zbl 1126.49014
[25] Zhou Z.A., Yang X.M., Peng J.W., Optimality conditions of set-valued optimization problem involving relative algebraic interior in ordered linear spaces, Optimization, 2014, 63, 433-446. · Zbl 1320.90067
[26] Zhou Z.A., Peng J.W., Scalarization of set-valued optimization problems with generalized cone subconvexlikeness in real ordered linear spaces, J. Optim. Theory Appl., 2012, 154, 830-841. · Zbl 1267.90136
[27] Zhou Z.A., Yang X.M., Scalarization of ε-super efficient solutions of set-valued optimization problems in real ordered linear spaces, J. Optim. Theory Appl., 2014, 162, 680-693. · Zbl 1317.90250
[28] Zhou Z.A., Yang X.M., Peng J.W., ε-optimality conditions of vector optimization problems with set-valued maps based on the algebraic interior in real linear spaces, Optim. Lett., 2014, 8, 1047-1061. · Zbl 1317.90273
[29] Barbagallo A., Ragusa M.A., On Lagrange duality theory for dynamics vaccination games, Ric. Mat., 2018, 67(2), 969-982. · Zbl 1403.49031
[30] Tiel J.V., Convex Analysis, 1984, Wiley, New York. · Zbl 0565.49001
[31] Shi S.Z., Convex Analysis, 1990, Shanghai Science and Technology Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.