×

Existence of nontrivial solutions for a system of fractional advection-dispersion equations. (English) Zbl 1427.34011

The authors consider a system of symmetric fractional equations of the form: \[\begin{gathered} \frac{d}{dt}\left(\frac{1}{2}(_0\mathcal D_t^{-\beta_i}u_i')(t)+\frac{1}{2} (_t\mathcal D_T^{-\beta_i}u_i')(t)\right)+F'_{u_i}(t,u_1(t),\dots,u_n(t))=0 \quad a.e.\quad t\in [0,T], \\ u_i(0)=u_i(T)=0 \end{gathered}\] for \(1\leq i \leq n\), \(0\leq \beta _i <1\), and \(_0\mathcal{D}_t^{-\beta_i}\), \(_t\mathcal{D}_T^{-\beta_i}\) are the left and right Riemann-Liouville fractional integrals, respectively. \(F:[0,T]\times \mathbb{R}^n \to \mathbb{R}^n \) is a Caratheodory-type function.
Some conditions on \(F\) are given which guarantee the existence of a non-trivial solution. The main tool is a critical point theorem by G. Bonanno and G. D’Aguí [Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72, No. 3–4, 1977–1982 (2010; Zbl 1200.34020)].

MSC:

34A08 Fractional ordinary differential equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
34B15 Nonlinear boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals

Citations:

Zbl 1200.34020
Full Text: DOI

References:

[1] Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[2] Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasmas 8, 5096-5103 (2001) · doi:10.1063/1.1416180
[3] Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: applications to turbulence. Phys. Rev. Lett. 58, 1100-1103 (1987) · doi:10.1103/PhysRevLett.58.1100
[4] Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48, 1683-1694 (1993) · doi:10.1103/PhysRevE.48.1683
[5] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equations of Levy motion. Water Resour. Res. 36, 1413-1423 (2000) · doi:10.1029/2000WR900032
[6] Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403-1412 (2000) · doi:10.1029/2000WR900031
[7] Fix, G., Roop, J.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017-1033 (2004) · Zbl 1069.65094 · doi:10.1016/j.camwa.2004.10.003
[8] Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Levy flights, and the MADE tracer tests. Transp. Porous Media 42, 211-240 (2001) · doi:10.1023/A:1006733002131
[9] Lu, S., Molz, F.J., Fix, G.J.: Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media. Water Resour. Res. 38(9), 1165-1171 (2002) · doi:10.1029/2001WR000624
[10] Meerschaert, M.M., Benson, D.A., Baeumer, B.: Multidimensional advection and fractional dispersion. Phys. Rev. E 59(5), 5026-5028 (1999) · doi:10.1103/PhysRevE.59.5026
[11] Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62, 1181-1199 (2011) · Zbl 1235.34017 · doi:10.1016/j.camwa.2011.03.086
[12] Teng, K., Jia, H., Zhang, H.: Existence and multiplicity results for fractional differential inclusions with Dirichlet boundary conditions. Appl. Math. Comput. 220, 792-801 (2013) · Zbl 1329.34047
[13] Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection dispersion equation. Comput. Math. Appl. 68, 1794-1805 (2014) · Zbl 1369.35108 · doi:10.1016/j.camwa.2014.10.011
[14] Bonanno, G.: A critical points theorem and nonlinear differential problems. J. Global Optim. 28, 249-258 (2004) · Zbl 1087.58007 · doi:10.1023/B:JOGO.0000026447.51988.f6
[15] Bonanno, G., Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 244, 3031-3059 (2008) · Zbl 1149.49007 · doi:10.1016/j.jde.2008.02.025
[16] Chen, J., Tang, X.: Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. (2012). https://doi.org/10.1155/2012/648635 · Zbl 1235.34011
[17] Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction diffusion equations with delay. Comput. Math. Appl. https://doi.org/10.1016/j.camwa.2016.01.028 · Zbl 1355.35196
[18] Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1-8 (2017) · Zbl 1364.35429 · doi:10.1016/j.aml.2016.10.015
[19] Ge, B.: Multiple solutions for a class of fractional boundary value problems. Abstr. Appl. Anal., art. ID 468-980 (2012) · Zbl 1253.34009
[20] Kong, L.: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 106, 1-15 (2013) · Zbl 1291.34016
[21] Heidarkhani, S.: Infinitely many solutions for nonlinear perturbed fractional boundary value problems. Ann. Univ. Craiova Math. Comput. Sci. Ser. 41(1), 88-103 (2014) · Zbl 1324.58005
[22] Bai, C.: Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem. Electron. J. Differ. Equ. 176, 1-9 (2012) · Zbl 1254.34009
[23] Li, Y., Sun, H., Zhang, Q.: Existence of solutions to fractional boundary-value problems with a parameter. Electron. J. Differ. Equ. 141, 1-12 (2013) · Zbl 1294.34006
[24] Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS, vol. 65. American Mathematical Society, New York (1986) · Zbl 0609.58002
[25] Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989) · Zbl 0676.58017 · doi:10.1007/978-1-4757-2061-7
[26] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[27] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[28] Bonanno, G., D’Aguì, G.: A critical point theorem and existence results for a nonlinear boundary value problem. Nonlinear Anal. 72, 1977-1982 (2010) · Zbl 1200.34020 · doi:10.1016/j.na.2009.09.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.