×

Finite volume methods for \(N\)-dimensional time fractional Fokker-Planck equations. (English) Zbl 1426.65141

Summary: We develop a finite volume method to numerically solve the \(N\)-dimensional time fractional Fokker-Planck equation \[ \frac{\partial ^\alpha \omega }{\partial t^\alpha }=k_\alpha \Delta \omega -\mathop{\sum}\limits _{k=1}^N\frac{\partial (f^{(k)}\omega )}{\partial x_k}, \] where \(\frac{\partial ^\alpha \omega }{\partial t^\alpha }\) is the Caputo fractional derivative of order \(\alpha\) with \(0<\alpha <1\). We theoretically prove that the method is unconditional stable and the error of the numerical solution is \(O(h+\Delta t^{2-\alpha })\) which can be improved to \(O(h^2+\Delta t^{2-\alpha })\) when the space grid is sufficiently fine, where \(h\) and \(\Delta t\) denote space and time grid sizes, respectively. Numerical tests are conducted to support our theoretical analysis.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35S10 Initial value problems for PDEs with pseudodifferential operators
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Software:

FODE
Full Text: DOI

References:

[1] Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979) · Zbl 0484.15016
[2] Cao, X., Fu, J., Huang, H.: Numerical method for the time fractional Fokker-Planck equation. Adv. Appl. Math. Mech. 4, 848-863 (2012) · Zbl 1262.65087 · doi:10.4208/aamm.12-12S13
[3] Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256-273 (2009) · Zbl 1167.65419 · doi:10.1016/j.apm.2007.11.005
[4] Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem. Academic Press, New York (1992) · Zbl 0757.90078
[5] Deng, W.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510-1522 (2007) · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[6] Deng, W.: Finte element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204-226 (2008) · Zbl 1416.65344 · doi:10.1137/080714130
[7] Fairweather, G., Zhang, H., Yang, X., Xu, D.: A backward Euler orthogonal spline collocation method for the time-fractional, Fokker-Planck equation. Numer. Methods PDEs 31, 1534-1550 (2014) · Zbl 1352.65392 · doi:10.1002/num.21958
[8] Feng, L.B., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 52-65 (2015) · Zbl 1339.65144
[9] Hejazi, H., Moroney, T., Liu, F.: A finite volume method for solving the two-sided time-space fractional advection – dispersion equation. Cent. Eur. J. Phys. 11, 1275-1283 (2013)
[10] Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection – dispersion equation. J. Comput. Appl. Math. 255, 684-697 (2014) · Zbl 1291.65280 · doi:10.1016/j.cam.2013.06.039
[11] Jiang, Y., Xu, X.: A monotone finite volume method for time fractional Fokker-Planck equations. Sci. China Math (2018). https://doi.org/10.1007/s11425-017-9179-x · Zbl 1426.65139
[12] Jiang, Y.: A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation. Appl. Math. Model. 39, 1163-1171 (2015) · Zbl 1432.65122 · doi:10.1016/j.apm.2014.07.029
[13] Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285-3290 (2011) · Zbl 1216.65130 · doi:10.1016/j.cam.2011.01.011
[14] Jiang, Y., Ma, J.: Moving finite element methods for time fractional partial differential equations. Sci. China math. Ser. A. 56, 1287-1300 (2013) · Zbl 1290.65091 · doi:10.1007/s11425-013-4584-2
[15] Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37, 945-964 (2017) · Zbl 1433.65214
[16] Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719-736 (2005) · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[17] Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187, 777-784 (2007) · Zbl 1125.26009
[18] Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108-2131 (2009) · Zbl 1193.35243 · doi:10.1137/080718942
[19] Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533-1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[20] Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871-3878 (2014) · Zbl 1429.65213 · doi:10.1016/j.apm.2013.10.007
[21] McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 5, 69-88 (2009) · Zbl 1177.65194 · doi:10.1007/s11075-008-9258-8
[22] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[23] Saadatmandi, A., Dehghan, M., Azizi, M.: The Sinc-Legendre collocation method for a class of fractional convection – diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125-4136 (2012) · Zbl 1250.65121 · doi:10.1016/j.cnsns.2012.03.003
[24] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Longman Scientific and Technical, New York (1995)
[25] Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker-Planck equations. Appl. Mat. Lett. 43, 38-43 (2015) · Zbl 1316.82023 · doi:10.1016/j.aml.2014.11.007
[26] Yang, Q., Turner, I., Moroney, T., Liu, F.: A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Appl. Math. Model. 38, 3755-3762 (2014) · Zbl 1429.65215 · doi:10.1016/j.apm.2014.02.005
[27] Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079-1095 (2008) · Zbl 1173.26006 · doi:10.1137/060673114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.