×

Fattening and nonfattening phenomena for planar nonlocal curvature flows. (English) Zbl 1426.53095

The author studies the fattening phenomena for nonlocal curvature flow of sets in Euclidean space. Given a rotationally invariant kernel \(K:\mathbb{R}^n\setminus\{0\}\to [0,\infty)\) satisfying some mild integrability assumption and a set \(E\subset \mathbb{R}^n\), the \(K\)-curvature of the set \(E\) at a boundary point \(x\in\partial E\) is defined by \[ H_E^K(x):=\lim_{\varepsilon\to 0}\int_{\mathbb{R}^n\setminus B_{\varepsilon}(x)}\left(\chi_{\mathbb{R}^n\setminus E}(y)-\chi_E(y)\right)K(x-y)dy \] which comes from the first variation formula of the nonlocal perimeter functional \[ \mathrm{Per}_K(E):=\int_E\int_{\mathbb{R}^n\setminus E}K(x-y)dxdy. \] When the kernel is homogeneous \(K(x)=|x|^{-n-s}\) for some \(s\in (0,1)\), the \(K\)-curvature is just the fractional mean curvature.
The evolution of sets driven by the \(K\)-curvature is interpreted as the level set flow \[ \partial_tu_E(x,t)+|Du_E(x,t)|H^K_{\{y|u_E(y,t)\geq u_E(x,t)}(x)=0\tag{1} \] with initial condition \(u_E(x,0)=u_E(x)\), where \(u_E:\mathbb{R}^n\to \mathbb{R}\) characterizes the initial set \(E\subset \mathbb{R}^n\). The (viscosity) solution of the level set flow starting from \(E\) is denoted by \[ \Sigma_E(t):=\{x\in \mathbb{R}^n:~u_E(x,t)=0\}. \] If \(\Sigma_E(t)\) has nonempty interior, we say that fattening occurs at \(t>0\). The nonfattening phenomenon is in fact corresponding to the uniqueness of the geometric evolution.
The fattening phenomenon has been studied for the mean curvature flow by many authors. But this problem has not yet been studied for nonlocal curvature flows, apart from the result in [A. Chambolle et al., Interfaces Free Bound. 19, No. 3, 393–415 (2017; Zbl 1380.53070)] for nonfattening for a convex initial set along the fractional mean curvature flow. In this paper, the authors first show that fattening cannot occur for regular initial set with positive \(K\)-curvature along the flow (1), similar to the evolution by mean curvature flow.
In Sections 3–5, the authors study the evolution of cross along the flow (1). The results show that the fattening phenomenon is very sensitive to the properties of the kernel \(K\) in the sense that if \(K\) has sufficiently large mass near the origin, then the fattening occurs; while the fattening cannot occur for kernels that are sufficiently weak near the origin.
In the second part (Sections 6–8) the authors focus on the fractional mean curvature flow. Firstly, it is proved that for strictly star-shaped sets the fattening cannot occur along the fractional mean curvature flow, similar to the case of the mean curvature flow. Then the authors provide two different examples to show that for general star-shaped sets we can expect either fattening or nonfattening. In particular, along the evolution of two tangent balls by fractional mean curvature flow, the fattening phenomenon cannot occur, in complete contrast to the evolution by the mean curvature flow.
Reviewer: Yong Wei (Act)

MSC:

53E10 Flows related to mean curvature
35D40 Viscosity solutions to PDEs
35R11 Fractional partial differential equations
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)

Citations:

Zbl 1380.53070

References:

[1] Barles, G., Soner, H.M., Souganidis, P.E.: Front propagation and phase field theory. SIAM J. Control Optim. 31(2), 439-469 (1993). https://doi.org/10.1137/0331021 · Zbl 0785.35049 · doi:10.1137/0331021
[2] Bellettini, G., Caselles, V., Chambolle, A., Novaga, M.: Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179(1), 109-152 (2006). https://doi.org/10.1007/s00205-005-0387-0 · Zbl 1148.53049 · doi:10.1007/s00205-005-0387-0
[3] Bellettini, G., Paolini, M.: Two examples of fattening for the curvature flow with a driving force. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5(3), 229-236 (1994) · Zbl 0826.35051
[4] Biton, S., Cardaliaguet, P., Ley, O.: Nonfattening condition for the generalized evolution by mean curvature and applications. Interfaces Free Bound. 10(1), 1-14 (2008). https://doi.org/10.4171/IFB/177 · Zbl 1154.53041 · doi:10.4171/IFB/177
[5] Bucur, C.: Valdinoci, Enrico: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Bologna (2016) · Zbl 1377.35002 · doi:10.1007/978-3-319-28739-3
[6] Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63(9), 1111-1144 (2010). https://doi.org/10.1002/cpa.20331 · Zbl 1248.53009 · doi:10.1002/cpa.20331
[7] Cesaroni, A., Novaga, M.: The isoperimetric problem for nonlocal perimeters. Discrete Contin. Dyn. Syst. Ser. S 11(3), 425-440 (2018). https://doi.org/10.3934/dcdss.2018023 · Zbl 1379.53013 · doi:10.3934/dcdss.2018023
[8] Chambolle, A., Morini, M., Ponsiglione, M.: Nonlocal curvature flows. Arch. Ration. Mech. Anal. 218(3), 1263-1329 (2015). https://doi.org/10.1007/s00205-015-0880-z · Zbl 1328.35166 · doi:10.1007/s00205-015-0880-z
[9] Chambolle, A., Novaga, M., Ruffini, B.: Some results on anisotropic fractional mean curvature flows. Interfaces Free Bound. 19(3), 393-415 (2017). https://doi.org/10.4171/IFB/387 · Zbl 1380.53070 · doi:10.4171/IFB/387
[10] Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749-786 (1991) · Zbl 0696.35087 · doi:10.4310/jdg/1214446564
[11] Cinti, E., Serra, J., Valdinoci, E.: Quantitative flatness results and BV-estimates for stable nonlocal minimal surfaces. J. Differ. Geom. (2018) · Zbl 1420.53014
[12] Cinti, E., Sinestrari, C., Valdinoci, E.: Neckpinch singularities in fractional mean curvature flows. Proc. Am. Math. Soc. 146(6), 2637-2646 (2018). https://doi.org/10.1090/proc/14002 · Zbl 1390.53068 · doi:10.1090/proc/14002
[13] Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635-681 (1991) · Zbl 0726.53029 · doi:10.4310/jdg/1214446559
[14] Giga, Y.: Surface Evolution Equations A level Set Approach, Monographs in Mathematics, vol. 99. Birkhäuser, Basel (2006) · Zbl 1096.53039
[15] Ilmanen, T.: Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J. 41(3), 671-705 (1992). https://doi.org/10.1512/iumj.1992.41.41036 · Zbl 0759.53035 · doi:10.1512/iumj.1992.41.41036
[16] Imbert, C.: Level set approach for fractional mean curvature flows. Interfaces Free Bound. 11(1), 153-176 (2009). https://doi.org/10.4171/IFB/207 · Zbl 1173.35533 · doi:10.4171/IFB/207
[17] Maz’ya, V.: Lectures on Isoperimetric and Isocapacitary Inequalities in the Theory of Sobolev Spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math., vol. 338, pp. 307-340. Amer. Math. Soc., Providence (2003). https://doi.org/10.1090/conm/338/06078 · Zbl 1062.31009 · doi:10.1090/conm/338/06078
[18] Sáez, M., Valdinoci, E.: On the evolution by fractional mean curvature. Commun. Anal. Geom. 27(1), (2019) · Zbl 1411.35274
[19] Savin, O., Valdinoci, E.: Regularity of nonlocal minimal cones in dimension 2. Calc. Var. Partial Differ. Equ. 48(1-2), 33-39 (2013). https://doi.org/10.1007/s00526-012-0539-7 · Zbl 1275.35065 · doi:10.1007/s00526-012-0539-7
[20] Soner, H.M.: Motion of a set by the curvature of its boundary. J. Differ. Equ. 101(2), 313-372 (1993). https://doi.org/10.1006/jdeq.1993.1015 · Zbl 0769.35070 · doi:10.1006/jdeq.1993.1015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.