×

Stability and Hopf bifurcation periodic orbits in delay coupled Lotka-Volterra ring system. (English) Zbl 1426.37042

Summary: In this paper, we consider a class of delay coupled Lotka-Volterra ring systems. Based on the symmetric bifurcation theory of delay differential equations and representation theory of standard dihedral groups, properties of phase locked periodic solutions are given. Moreover, the direction and the stability of the Hopf bifurcation periodic orbits are obtained by using normal form and center manifold theory. Finally, the research results are verified by numerical simulation.

MSC:

37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37C10 Dynamics induced by flows and semiflows
34K20 Stability theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations

References:

[1] May R.M., Population Interactions and Change in Biotic Communities, Science, 1973, 181, 1157-1158.
[2] Freedman I.H., Deterministic mathematical models in population ecology, Biometrics, 1980, 22(7), 219-236. · Zbl 0448.92023
[3] Takeuchi Y., Global Dynamical Properties of Lotka-Volterra Systems, World Scientific, 1996. · Zbl 0844.34006
[4] Lotka A.J., Elements of Physical Biology, Dover Publications, 1956. · Zbl 0074.14404
[5] Volterra V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem R Accad Naz dei Lincei Ser VI 2. · JFM 52.0450.06
[6] Golubitsky M., Stewart I.N., Schaeffer D.G., Singularities and Groups in Bifurcation Theory (Volume II), Springer-Verlag, 1988. · Zbl 0691.58003
[7] Gopalsamy K., Global asymptotic stability in a periodic Lotka-Volterra system, The ANZIAM Journal, 1985, 27(1), 7. · Zbl 0588.92019
[8] Li Y., Kuang Y., Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Math. Anal. Appl., 2001, 255(1), 260-280. · Zbl 1024.34062
[9] Yang Z., Cao J., Positive periodic solutions of neutral Lotka-Volterra system with periodic delays, Appl. Math. Comput., 2004, 149(3), 661-687. · Zbl 1045.92037
[10] Yujuan Z., Bing L., Lansun C., Dynamical behavior of Volterra model with mutual interference concerning IPM, Math. Model. Numer. Anal., 2004, 38(1), 143-155. · Zbl 1081.34042
[11] Hu D., Zhang Z., Four positive periodic solutions to a Lotka-Volterra cooperative system with harvesting terms, Nonlinear Anal. Real World Appl., 2010, 11(2), 1115-1121. · Zbl 1187.34050
[12] Li Y., Zhao K., Ye Y., Multiple positive periodic solutions of species delay competition systems with harvesting terms, Nonlinear Anal. Real World Appl., 2011, 12(2), 1013-1022. · Zbl 1225.34094
[13] Zhao K., Li Y., Multiple positive periodic solutions to a non-autonomous Lotka-Volterra Predator-prey system with harvesting terms, Electron. J. Differential Equations, 2011, 2011(49), 1-11. · Zbl 1216.34046
[14] Zhao K., Liu J., Existence of positive almost periodic solutions for delay Lotka-Volterra cooperative systems, Electron. J. Differential Equations, 2013, 2013(157), 1-12. · Zbl 1292.34079
[15] Yu P., Han M., Xiao D., Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 2016, 436(1), 521-555. · Zbl 1334.34072
[16] Li J., Zhao A., Stability analysis of a non-autonomous Lotka-Volterra competition model with seasonal succession, Appl. Math. Model., 2016, 40(2), 763-781. · Zbl 1446.92015
[17] Bao X., Li W.T., Shen W., Traveling wave solutions of Lotka-Volterra Competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 2016, 260(12), 8590-8637. · Zbl 1338.35094
[18] Chen S., Wang T., Zhang J., Positive periodic solution for non-autonomous competition Lotka-Volterra patch system with time delay, Nonlinear Anal. Real World Appl., 2004, 5(3), 409-419. · Zbl 1093.34033
[19] Ma L., Guo S., Stability and bifurcation in a diffusive Lotka-Volterra system with delay, Comput. Math. Appl., 2016, 72(1), 147-177. · Zbl 1443.92162
[20] Sun W., Chen S., Hong Z., On positive periodic solution of periodic competition Lotka-Volterra system with time delay and diffusion, Chaos, Solitons and Fractals, 2007, 33(3), 971-978. · Zbl 1151.34329
[21] Zhang L., Li H.X., Zhang X.B., Periodic solutions of competition Lotka-Volterra dynamic system on time scales, Comput. Math. Appl., 2009, 57(7), 1204-1211. · Zbl 1186.34129
[22] Kuznetsov Y., Elements of Applied Bifurcation Theory, Springer-Verlag, 1995. · Zbl 0829.58029
[23] Xia J., Yu Z., Yuan R., Stability and Hopf bifurcation in a symmetric Lotka-Volterra predator-prey system with delays, Electron. J. Differential Equations, 2013, 2013(09), 118-134. · Zbl 1290.34083
[24] Wang J., Zhou X., Huang L., Hopf bifurcation and multiple periodic solutions in Lotka-Volterra systems with symmetries, Nonlinear Anal. Real World Appl., 2013, 14(3), 1817-1828. · Zbl 1267.34140
[25] Wildenberg J.C., Vano J.A., Sprott J.C., Complex spatiotemporal dynamics in Lotka-Volterra ring systems, Ecological Complexity, 2006, 3(2), 140-147.
[26] Hu X.-B., Li C.X., Nimmo J., Yu G.-F., An integrable symmetric (2 + 1)-dimensional Lotka-Volterra equation and a family of its solutions, J. Phys. A: Math. Gen., 2005, 38(1), 195-204. · Zbl 1063.37063
[27] Wu J., Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 1998, 350(12). · Zbl 0905.34034
[28] Wu J., Faria T., Huang Y.S., Synchronization and stable phase-locking in a network of neurons with memory, Math. Comput. Model., 1999, 30(1-2), 117-138. · Zbl 1043.92500
[29] Krawcewicz W., Wu J., Theory and applications of Hopf bifurcations in symmetric functional differential equations, Nonlinear Anal., 1999, 35(7), 845-870. · Zbl 0917.58027
[30] Zhang C., Zheng B., Wang L., Multiple Hopf bifurcations of three coupled Van der Pol oscillators with delay, Appl. Math. Comput., 2011, 217(17), 7155-7166. · Zbl 1223.34102
[31] Zhang C., Zhang Y., Zheng B., A model in a coupled system of simple neural oscillators with delays, Elsevier Science Publishers B.V., 2009. · Zbl 1176.34087
[32] Zheng B., Yin H., Zhang C., Equivariant Hopf-Pitchfork bifurcation of symmetric coupled neural network with delay, Internat. J. Bifur. Chaos, 2016, 26(12), 1650205. · Zbl 1352.34098
[33] Peng M., Bifurcation and stability analysis of nonlinear waves in symmetric delay differential systems, J. Differential Equations, 2007, 232(2), 521-543. · Zbl 1118.34067
[34] Hu H., Huang L., Stability and Hopf bifurcation analysis on a ring of four neurons with delays, Appl. Math. Comput., 2009, 213(2), 587-599. · Zbl 1175.34092
[35] Guo S., Stability and bifurcation in a ring neural network, Doctoral Dissertation of Hunan University, 2004.
[36] Faria T., Magalhaes L.T., Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differential Equations, 1995, 122(2), 181-200. · Zbl 0836.34068
[37] Faria T., Magalhaes L.T., Normal forms for retarded functional differential equations and applications to Bogdanov-Takens Singularity, J. Differential Equations, 1995, 122(2), 201-224. · Zbl 0836.34069
[38] Hale J., Lunel S.M.V., Introduction to Functional Differential Equations, Springer-Verlag, 1993. · Zbl 0787.34002
[39] Fan D., Wei J., Equivariant Hopf bifurcation in a ring of identical cells with delay, Math. Probl. Eng., 2009, 34. · Zbl 1182.37035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.