×

Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. (English) Zbl 1425.93175

Summary: Data-driven discovery of dynamics via machine learning is pushing the frontiers of modelling and control efforts, providing a tremendous opportunity to extend the reach of model predictive control (MPC). However, many leading methods in machine learning, such as neural networks (NN), require large volumes of training data, may not be interpretable, do not easily include known constraints and symmetries, and may not generalize beyond the attractor where models are trained. These factors limit their use for the online identification of a model in the low-data limit, for example following an abrupt change to the system dynamics. In this work, we extend the recent sparse identification of nonlinear dynamics (SINDY) modelling procedure to include the effects of actuation and demonstrate the ability of these models to enhance the performance of MPC, based on limited, noisy data. SINDY models are parsimonious, identifying the fewest terms in the model needed to explain the data, making them interpretable and generalizable. We show that the resulting SINDY-MPC framework has higher performance, requires significantly less data, and is more computationally efficient and robust to noise than NN models, making it viable for online training and execution in response to rapid system changes. SINDY-MPC also shows improved performance over linear data-driven models, although linear models may provide a stopgap until enough data is available for SINDY. SINDY-MPC is demonstrated on a variety of dynamical systems with different challenges, including the chaotic Lorenz system, a simple model for flight control of an F8 aircraft, and an HIV model incorporating drug treatment.

MSC:

93C55 Discrete-time control/observation systems
93B40 Computational methods in systems theory (MSC2010)
68T05 Learning and adaptive systems in artificial intelligence

Software:

SINDy

References:

[1] Kutz JN, Brunton SL, Brunton BW, Proctor JL. (2016) Dynamic mode decomposition: data-driven modeling of complex systems. Philadelphia, PA: SIAM. · Zbl 1365.65009
[2] Brunton SL, Proctor JL, Kutz JN. (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. 113, 3932-3937. (doi:10.1073/pnas.1517384113) · Zbl 1355.94013 · doi:10.1073/pnas.1517384113
[3] Allgöwer F, Badgwell TA, Qin JS, Rawlings JB, Wright SJ. (1999) Nonlinear predictive control and moving horizon estimation: an introductory overview. In Advances in control: Highlights of ECC’99 (ed. PM Frank), pp. 391-449. London, UK: Springer.
[4] Camacho EF, Alba CB. (2013) Model predictive control. Berlin, Germany: Springer Science & Business Media.
[5] Skogestad S, Postlethwaite I. (2005) Multivariable feedback control: analysis and design, 2nd edn. Hoboken, NJ: John Wiley & Sons, Inc. · Zbl 0842.93024
[6] Dullerud GE, Paganini F. (2000) A course in robust control theory: a convex approach. Texts in Applied Mathematics. Berlin, Germany: Springer. · Zbl 0939.93001
[7] Garcia CE, Prett DM, Morari M. (1989) Model predictive control: theory and practice — a survey. Automatica 25, 335-348. (doi:10.1016/0005-1098(89)90002-2) · Zbl 0685.93029 · doi:10.1016/0005-1098(89)90002-2
[8] Morari M, Lee JH. (1999) Model predictive control: past, present and future. Comput. Chem. Eng. 23, 667-682. (doi:10.1016/S0098-1354(98)00301-9) · doi:10.1016/S0098-1354(98)00301-9
[9] Lee JH. (2011) Model predictive control: review of the three decades of development. Int. J. Control Autom. Syst. 9, 415-424. (doi:10.1007/s12555-011-0300-6) · doi:10.1007/s12555-011-0300-6
[10] Mayne DQ. (2014) Model predictive control: recent developments and future promise. Automatica 50, 2967-2986. (doi:10.1016/j.automatica.2014.10.128) · Zbl 1309.93060 · doi:10.1016/j.automatica.2014.10.128
[11] Eren U, Prach A, Koçer BBRaković SV, Kayacan B, Açıkmeşe E. (2017) Model predictive control in aerospace systems: current state and opportunities. J. Guid. Control Dyn. 40, 1541-1566. (doi:10.2514/1.G002507) · doi:10.2514/1.G002507
[12] Brunton SL, Noack BR. (2015) Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 50801-1-050801-48. (doi:10.1115/1.4031175) · doi:10.1115/1.4031175
[13] Juang JN, Pappa RS. (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8, 620-627. (doi:10.2514/3.20031) · Zbl 0589.93008 · doi:10.2514/3.20031
[14] Brockett RW. (1976) Volterra series and geometric control theory. Automatica 12, 167-176. (doi:10.1016/0005-1098(76)90080-7) · Zbl 0342.93027 · doi:10.1016/0005-1098(76)90080-7
[15] Boyd S, Chua LO, Desoer CA. (1984) Analytical foundations of Volterra series. IMA J. Math. Control Inf. 1, 243-282. (doi:10.1093/imamci/1.3.243) · Zbl 0668.93042 · doi:10.1093/imamci/1.3.243
[16] Maner BR, Doyle FJ, Ogunnaike BA, Pearson RK. (1994) A nonlinear model predictive control scheme using second order Volterra models. In American Control Conference, Baltimore, MD, 29 June-1 July, vol. 3, pp. 3253-3257. Piscataway, NJ: IEEE.
[17] Akaike H. (1969) Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21, 243-247. (doi:10.1007/BF02532251) · Zbl 0202.17301 · doi:10.1007/BF02532251
[18] Billings SA. (2013) Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains. Chichester, UK: John Wiley & Sons. · Zbl 1287.93101
[19] Lippmann R. (1987) An introduction to computing with neural nets. IEEE Assp Mag. 4, 4-22. (doi:10.1109/MASSP.1987.1165593) · doi:10.1109/MASSP.1987.1165593
[20] Draeger A, Engell S, Ranke H. (1995) Model predictive control using neural networks. IEEE Control Syst. Mag. 15, 61-66. (doi:10.1109/37.466261) · doi:10.1109/37.466261
[21] Wang T, Gao H, Qiu J. (2016) A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 27, 416-425. (doi:10.1109/TNNLS.2015.2411671) · doi:10.1109/TNNLS.2015.2411671
[22] Aggelogiannaki E, Sarimveis H. (2008) Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Comput. Chem. Eng. 32, 1225-1237. (doi:10.1016/j.compchemeng.2007.05.002) · doi:10.1016/j.compchemeng.2007.05.002
[23] Williams MO, Kevrekidis IG, Rowley CW. (2015) A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlin. Sci. 25, 1307-1346. (doi:10.1007/s00332-015-9258-5) · Zbl 1329.65310 · doi:10.1007/s00332-015-9258-5
[24] Korda M, Mezić I. (2016) Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. (http://arxiv.org/abs/1611.03537)
[25] Peitz S, Schäfer K, Ober-Blöbaum S, Eckstein J, Köhler U, Dellnitz M. (2016) A multiobjective MPC approach for autonomously driven electric vehicles. (http://arxiv.org/abs/1610.08777)
[26] Peng H, Wu J, Inoussa G, Deng Q, Nakano K. (2009) Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model. Control Eng. Pract. 17, 59-66. (doi:10.1016/j.conengprac.2008.05.005) · doi:10.1016/j.conengprac.2008.05.005
[27] Zhang T, Kahn G, Levine S, Abbeel P. (2016) Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16-21 May, pp. 528-535. Piscataway, NJ: IEEE.
[28] Bongard J, Lipson H. (2007) Automated reverse engineering of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 104, 9943-9948. (doi:10.1073/pnas.0609476104) · Zbl 1155.37044 · doi:10.1073/pnas.0609476104
[29] Schmidt M, Lipson H. (2009) Distilling free-form natural laws from experimental data. Science 324, 81-85. (doi:10.1126/science.1165893) · doi:10.1126/science.1165893
[30] Quade M, Abel M, Kutz JN, Brunton SL. (2018) Sparse identification of nonlinear dynamics for rapid model recovery. Chaos 28, 063116. (doi:10.1063/1.5027470) · doi:10.1063/1.5027470
[31] Loiseau JC, Brunton SL. (2018) Constrained sparse Galerkin regression. J. Fluid Mech. 838, 42-67. (doi:10.1017/jfm.2017.823) · Zbl 1419.76205 · doi:10.1017/jfm.2017.823
[32] Proctor JL, Brunton SL, Kutz JN. (2016) Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15, 142-161. (doi:10.1137/15M1013857) · Zbl 1334.65199 · doi:10.1137/15M1013857
[33] Li K, Peng JX, Irwin GW. (2005) A fast nonlinear model identification method. IEEE Trans. Autom. Control 50, 1211-1216. (doi:10.1109/TAC.2005.852557) · Zbl 1365.93104 · doi:10.1109/TAC.2005.852557
[34] Chen T, Andersen MS, Ljung L, Chiuso A, Pillonetto G. (2014) System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques. IEEE Trans. Autom. Control 59, 2933-2945. (doi:10.1109/TAC.2014.2351851) · Zbl 1360.93720 · doi:10.1109/TAC.2014.2351851
[35] Xu W, Bai EW, Cho M. (2014) System identification in the presence of outliers and random noises: a compressed sensing approach. Automatica 50, 2905-2911. (doi:10.1016/j.automatica.2014.10.017) · Zbl 1300.93175 · doi:10.1016/j.automatica.2014.10.017
[36] Pan W, Yuan Y, Gonçalves J, Stan GB. (2012) Reconstruction of arbitrary biochemical reaction networks: a compressive sensing approach. In 2012 IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, 10-13 December, pp. 2334-2339. Piscataway, NJ: IEEE.
[37] Calafiore GC, El Ghaoui LM, Novara C. (2015) Sparse identification of posynomial models. Automatica 59, 27-34. (doi:10.1016/j.automatica.2015.06.003) · Zbl 1326.93028 · doi:10.1016/j.automatica.2015.06.003
[38] Pan W, Yuan Y, Gonçalves J, Stan GB. (2016) A sparse Bayesian approach to the identification of nonlinear state-space systems. IEEE Trans. Autom. Control 61, 182-187. (doi:10.1109/TAC.2015.2426291) · Zbl 1359.93504 · doi:10.1109/TAC.2015.2426291
[39] Nelles O. (2013) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Berlin, Germany: Springer Science & Business Media.
[40] Pillonetto G, Dinuzzo F, Chen T, De Nicolao G, Ljung L. (2014) Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50, 657-682. (doi:10.1016/j.automatica.2014.01.001) · Zbl 1298.93342 · doi:10.1016/j.automatica.2014.01.001
[41] Rudin LI, Osher S, Fatemi E. (1992) Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268. (doi:10.1016/0167-2789(92)90242-F) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[42] Chartrand R. (2011) Numerical differentiation of noisy, nonsmooth data. ISRN Appl. Math. 2011, 1-11. (doi:10.5402/2011/164564) · Zbl 1242.65045 · doi:10.5402/2011/164564
[43] Tibshirani R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267-288. · Zbl 0850.62538
[44] Tropp JA. (2006) Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52, 1030-1051. (doi:10.1109/TIT.2005.864420) · Zbl 1288.94025 · doi:10.1109/TIT.2005.864420
[45] Su W, Bogdan M, Candès EJ. (2016) False discoveries occur early on the Lasso path. (http://arxiv.org/abs/1511.01957)
[46] Zhang L, Schaeffer H. (2018) On the convergence of the SINDy algorithm. (http://arxiv.org/abs/1805.06445)
[47] Zheng P, Askham T, Brunton SL, Kutz JN, Aravkin AY. (2018) A unified framework for sparse relaxed regularized regression: SR3. (http://arxiv.org/abs/1807.05411)
[48] Gevers M, Bazanella AS, Coutinho DF, Dasgupta S. (2013) Identifiability and excitation of polynomial systems. In 52nd IEEE Conference Decision and Control (CDC), Florence, Italy, 10-13 December, pp. 4278-4283. IEEE.
[49] Alkhoury Z, Petreczky M, Mercère G. (2017) Identifiability of affine linear parameter-varying models. Automatica 80, 62-74. (doi:10.1016/j.automatica.2017.01.029) · Zbl 1370.93085 · doi:10.1016/j.automatica.2017.01.029
[50] Mangan NM, Kutz JN, Brunton SL, Proctor JL. (2017) Model selection for dynamical systems via sparse regression and information criteria. Proc. R. Soc. A 473, 1-16. (doi:10.1098/rspa.2017.0009) · Zbl 1404.65308 · doi:10.1098/rspa.2017.0009
[51] Rudy SH, Brunton SL, Proctor JL, Kutz JN. (2017) Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614. (doi:10.1126/sciadv.1602614) · doi:10.1126/sciadv.1602614
[52] Schaeffer H. (2017) Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. A 473, 20160446. (doi:10.1098/rspa.2016.0446) · Zbl 1404.35397 · doi:10.1098/rspa.2016.0446
[53] Brunton SL, Brunton BW, Proctor JL, Kaiser E, Kutz JN. (2017) Chaos as an intermittently forced linear system. Nat. Commun. 8, 1-9. (doi:10.1038/s41467-017-00030-8) · doi:10.1038/s41467-017-00030-8
[54] Tran G, Ward R. (2016) Exact recovery of chaotic systems from highly corrupted data. (http://arxiv.org/abs/1607.01067)
[55] Schaeffer H, McCalla SG. (2017) Sparse model selection via integral terms. Phys. Rev. E 96, 023302. (doi:10.1103/PhysRevE.96.023302) · doi:10.1103/PhysRevE.96.023302
[56] Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson D. (2009) Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115-127. (doi:10.1017/S0022112009992059) · Zbl 1183.76833 · doi:10.1017/S0022112009992059
[57] Schmid PJ. (2010) Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5-28. (doi:10.1017/s0022112010001217) · Zbl 1197.76091 · doi:10.1017/s0022112010001217
[58] Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. (2014) On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1, 391-421. (doi:10.3934/jcd.2014.1.391) · Zbl 1346.37064 · doi:10.3934/jcd.2014.1.391
[59] Holmes PJ, Lumley JL, Berkooz G, Rowley CW. (2012) Turbulence, coherent structures, dynamical systems and symmetry, 2nd edn. Cambridge, England: Cambridge University Press. · Zbl 1251.76001
[60] Johansen TA. (2011) Introduction to nonlinear model predictive control and moving horizon estimation. In Selected topics on constrained and nonlinear control, pp. 187-240. Bratislava, Slovakia: STU and Trondheim, Norway: NTNU.
[61] Lee S, Lee D, Oh H. (2005) Technological forecasting at the Korean stock market: a dynamic competition analysis using Lotka-Volterra model. Technol. Forecast. Soc. Change 72, 1044-1057. (doi:10.1016/j.techfore.2002.11.001) · doi:10.1016/j.techfore.2002.11.001
[62] Venturino E. (1994) The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 24, 381-402. (doi:10.1216/rmjm/1181072471) · Zbl 0799.92017 · doi:10.1216/rmjm/1181072471
[63] Hornik K, Stinchcombe M, White H. (1989) Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359-366. (doi:10.1016/0893-6080(89)90020-8) · Zbl 1383.92015 · doi:10.1016/0893-6080(89)90020-8
[64] Schroeder M. (1970) Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.). IEEE Trans. Inf. Theory 16, 85-89. (doi:10.1109/TIT.1970.1054411) · doi:10.1109/TIT.1970.1054411
[65] Lorenz EN. (1963) Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141. (doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[66] Garrard WL, Jordan JM. (1977) Design of nonlinear automatic flight control systems. Automatica 13, 497-505. (doi:10.1016/0005-1098(77)90070-X) · Zbl 0382.93047 · doi:10.1016/0005-1098(77)90070-X
[67] çimen T, Banks SP. (2004) Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Syst. Control Lett. 53, 327-346. (doi:10.1016/j.sysconle.2004.05.008) · Zbl 1157.49313 · doi:10.1016/j.sysconle.2004.05.008
[68] Yan Z, Wang J. (2012) Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind. Inform. 8, 746-756. (doi:10.1109/TII.2012.2205582) · doi:10.1109/TII.2012.2205582
[69] Perelson AS, Nelson PW. (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3-44. (doi:10.1137/S0036144598335107) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[70] Zurakowski R, Teel AR. (2006) A model predictive control based scheduling method for HIV therapy. J. Theor. Biol. 238, 368-382. (doi:10.1016/j.jtbi.2005.05.004) · Zbl 1445.92158 · doi:10.1016/j.jtbi.2005.05.004
[71] Wodarz D. (2001) Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance. J. Theor. Biol. 213, 447-459. (doi:10.1006/jtbi.2001.2426) · doi:10.1006/jtbi.2001.2426
[72] Brunton SL, Tu JH, Bright I, Kutz JN. (2014) Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst. 13, 1716-1732. (doi:10.1137/130949282) · Zbl 1354.37078 · doi:10.1137/130949282
[73] Sargsyan S, Brunton SL, Kutz JN. (2015) Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. Phys. Rev. E 92, 033304. (doi:10.1103/PhysRevE.92.033304) · doi:10.1103/PhysRevE.92.033304
[74] Loiseau JC, Noack BR, Brunton SL. (2018) Sparse reduced-order modelling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459-490. (doi:10.1017/jfm.2018.147) · Zbl 1461.76369 · doi:10.1017/jfm.2018.147
[75] Takens F. (1981) Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366-381. (doi:10.1007/BFb0091924) · Zbl 0513.58032 · doi:10.1007/BFb0091924
[76] Mezić I. (2005) Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309-325. (doi:10.1007/s11071-005-2824-x) · Zbl 1098.37023 · doi:10.1007/s11071-005-2824-x
[77] Budišić M, Mohr R, Mezić I. (2012) Applied Koopmanism. Chaos 22, 047510. (doi:10.1063/1.4772195) · Zbl 1319.37013 · doi:10.1063/1.4772195
[78] Kaiser E, Kutz JN, Brunton SL. (2017) Data-driven discovery of Koopman eigenfunctions for control. (http://arxiv.org/abs/1707.01146).
[79] Mangan NM, Brunton SL, Proctor JL, Kutz JN. (2016) Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Bio. Multi-Scale Commun. 2, 52-63. (doi:10.1109/TMBMC.2016.2633265) · doi:10.1109/TMBMC.2016.2633265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.