×

Existence of solution for non-linear functional integral equations of two variables in Banach algebra. (English) Zbl 1425.45003

Summary: The aim of this article is to establish the existence of the solution of non-linear functional integral equations \(x(l,h)=(U(l,h,x(l,h))+F (l,h,\int_0^l \int_0^h P (l, h, r, u, x(r, u))drdu,x,(l, h)))\times G (l,h,\int_0^a \int_0^a Q (l,h,r,u,x,(r,u))drdu, x(l,h))\) of two variables, which is of the form of two operators in the setting of Banach algebra \(C([0,a]\times[0,a])\), \(a>0\). Our methodology relies upon the measure of noncompactness related to the fixed point hypothesis. We have used the measure of noncompactness on \(C([0,a]\times[0,a])\) and a fixed point theorem, which is a generalization of Darbo’s fixed point theorem for the product of operators. We additionally illustrate our outcome with the help of an interesting example.

MSC:

45G15 Systems of nonlinear integral equations
47H10 Fixed-point theorems

References:

[1] Chandrasekhar, S.; ; Radiative Transfer: London, UK 1950; .
[2] Hu, S.; Khavanin, M.; Zhuang, W.; Integral equations arising in the kinetic theory of grass; Appl. Anal.: 1989; Volume 34 ,261-266. · Zbl 0697.45004
[3] Kelly, C.T.; Approximation of solution of some quadratic integral equations in transport theory; J. Integral Equ.: 1982; Volume 4 ,221-237. · Zbl 0495.45010
[4] Zabrejko, P.P.; Koshelev, A.I.; Krasnosel’skii, M.A.; Mikhlin, S.G.; Rakovshchik, L.S.; Stetsenko, V.J.; ; Integral Equations: Moscow, Russia 1968; . · Zbl 0159.41001
[5] Banaś, J.; Lecko, M.; Fixed points of the product of operators in Banach algebra; Panamer Math. J.: 2002; Volume 12 ,101-109. · Zbl 1009.47048
[6] Dhage, B.C.; A flxed point theorem in Banach algebras with applications to functional integral equations; Kyungpook Math. J.: 2004; Volume 44 ,145-155. · Zbl 1057.47062
[7] Dhage, B.C.; On a flxed point theorem in Banach algebras with applications; Appl. Math. Lett.: 2005; Volume 18 ,273-280. · Zbl 1092.47045
[8] Banaś, J.; Olszowy, L.; On a class of measure of noncompactness in Banach algebras and their application to nonlinear integral equations; J. Anal. Appl.: 2009; Volume 28 ,1-24. · Zbl 1191.47069
[9] Pathak, H.K.; A study on some problems on existence of solutions for nonlinear functional-integral equations; Acta Math. Sci.: 2013; Volume 33 ,1305-1313. · Zbl 1299.47108
[10] Kuratowski, K.; Sur les espaces complets; Fund. Math.: 1930; Volume 15 ,301-309. · JFM 56.1124.04
[11] Darbo, G.; Punti uniti in trasformazioni a codominio non compatto; Rend. Sem. Mater. Univ. Padova: 1955; Volume 24 ,84-92. · Zbl 0064.35704
[12] Alotaibi, A.; Mursaleen, M.; Mohiuddine, S.A.; Application of measure of noncompactness to infinite system of linear equations in sequence spaces; Bull. Iran. Math. Soc.: 2015; Volume 41 ,519-527. · Zbl 1373.46002
[13] Aghajani, A.; Allahyari, R.; Mursaleen, M.; A generalization of Darbo’s theorem with application to the solvability of systems of integral equations; J. Comput. Appl. Math.: 2014; Volume 260 ,68-77. · Zbl 1293.47048
[14] Arab, R.; Allahyari, R.; Haghighi, A.S.; Existence of solutions of infinite systems of integral equations in two variables via measure of noncompactness; Appl. Math. Comput.: 2014; Volume 246 ,283-291. · Zbl 1338.45005
[15] Darwish, M.A.; On quadratic integral equation of fractional orders; J. Math. Anal. Appl.: 2005; Volume 311 ,112-119. · Zbl 1080.45004
[16] Mishra, L.N.; Sen, M.; Mohapatra, R.N.; On existence theorems for some generalized nonlinear functional-integral equations with applications; Filomat: 2017; Volume 31 ,2081-2091. · Zbl 1488.45056
[17] Mohiuddine, S.A.; Srivastava, H.M.; Alotaibi, A.; Application of measures of noncompactness to the infinite system of second-order differential equations in lp spaces; Adv. Differ. Equ.: 2016; Volume 2016 ,317. · Zbl 1419.47009
[18] Mursaleen, M.; Mohiuddine, S.A.; Applications of measures of noncompactness to the infinite system of differential equations in lp spaces; Nonlinear Anal.: 2012; Volume 75 ,2111-2115. · Zbl 1256.47060
[19] Mursaleen, M.; Rizvi, S.M.H.; Solvability of infinite systems of second order differential equations in c0 and ℓ1 by Meir-Keeler condensing operators; Proc. Am. Math. Soc.: 2016; Volume 144 ,4279-4289. · Zbl 1385.47021
[20] Srivastava, H.M.; Das, A.; Hazarika, B.; Mohiuddine, S.A.; Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces c0 and l1 via the measure of noncompactness; Math. Meth. Appl. Sci.: 2018; Volume 41 ,3558-3569. · Zbl 06923678
[21] Banaś, J.; Goebel, K.; ; Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics: New York, NY, USA 1980; Volume Volume 60 . · Zbl 0441.47056
[22] Shang, Y.; Subspace confinement for switched linear systems; Forum Math.: 2017; Volume 29 ,693-699. · Zbl 1360.15003
[23] Shang, Y.; Fixed-time group consensus for multi-agent systems with non-linear dynamics and uncertainties; IET Control Theory Appl.: 2018; Volume 12 ,395-404.
[24] Shang, Y.; Resilient consensus of switched multi-agent systems; Syst. Control Lett.: 2018; Volume 122 ,12-18. · Zbl 1408.93014
[25] Glayeri, A.; Rabbani, M.; New Technique in Semi-Analytic Method for Solving Non-Linear Differential Equations; Math. Sci.: 2011; Volume 5 ,395-404.
[26] Rabbani, M.; Modified homotopy method to solve non-linear integral equations; Int. J. Nonlinear Anal. Appl.: 2015; Volume 6 ,133-136. · Zbl 1326.45003
[27] Rabbani, M.; New Homotopy Perturbation Method to Solve Non-Linear Problems; J. Math. Comput. Sci.: 2013; Volume 7 ,272-275.
[28] Adomian, G.; ; Solving Frontier Problem of Physics: The Decomposition Method: Dordrecht, The Netherlands 1994; . · Zbl 0802.65122
[29] Rabbani, M.; Arab, R.; Hazarika, B.; Solvability of nonlinear quadratic integral equation by using simulation type condensing operator and measure of noncompactness; Appl. Math. Comput.: 2019; Volume 349 ,102-117. · Zbl 1428.45004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.