×

Two generalizations of Auslander-Reiten duality and applications. (English) Zbl 1425.13006

The Auslander-Reiten conjecture is the following. Let \(R\) be a commutative Noetherian ring and let \(M\) be a finitely generated \(R\)-module. If \(\mathrm{Ext}^i_R(M,M) = 0 = \mathrm{Ext}^i_R(M,R)\) for all \(i \geq 1\) then \(M\) is projective. Several special cases of the conjecture are known to hold. Although it was initially proposed over Artin algebras, it is still meaningful for arbitrary commutative Noetherian rings. The paper has two main results, involving exact sequences and isomorphisms of Ext-modules. Both of these theorems extend (and imply, for \(d \geq 2\)) the Auslander-Reiten duality theorem: Let \((R,\mathfrak m)\) be a \(d\)-dimensional Gorenstein local ring. Let \(M, N\) be maximal Cohen-Macaulay \(R\)-modules such that \(NF(M) \cap NF(N) \subseteq \{ \mathfrak m \}\). Then for all \(i \in \mathbb Z\), there is an isomorphism of Tate cohomology modules \(\widehat{\mathrm{Ext}}^i_R(N,M)^\vee \cong \widehat{\mathrm{Ext}}_R^{(d-1)-i} (M,N)\). (Here \(NF(M)\) refers to the non-free locus of the \(R\)-module \(M\), i.e. the set of prime ideals \(\mathfrak p\) such that \(M_{\mathfrak p}\) is not \(R_{\mathfrak p}\)-free.) In fact, one of the results of the paper even completely recovers this duality result for all \(d \geq 0\). The authors give a number of applications and corollaries of their results.

MSC:

13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.)
13C14 Cohen-Macaulay modules
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)

References:

[1] T. Araya, The Auslander-Reiten conjecture for Gorenstein rings, Proc. Amer. Math. Soc. 137 (2009), no. 6, 1941-1944. · Zbl 1163.13015 · doi:10.1090/S0002-9939-08-09757-8
[2] T. Araya, O. Celikbas, A. Sadeghi, and R. Takahashi, On the vanishing of self extensions over Cohen-Macaulay local rings, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4563-4570. · Zbl 1401.13043 · doi:10.1090/proc/13944
[3] M. Auslander, On the purity of the branch locus, Amer. J. Math. 84 (1962), 116-125. · Zbl 0112.13101 · doi:10.2307/2372807
[4] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94, American Mathematical Society, Providence, RI, 1969. · Zbl 0204.36402
[5] M. Auslander, S. Ding, and Ø. Solberg, Liftings and weak liftings of modules, J. Algebra, 156 (1993), 273-317. · Zbl 0778.13007
[6] M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74. · Zbl 0337.16004
[7] L. L. Avramov, R.-O. Buchweitz, and L. Şega, Extensions of a dualizing complex by its ring: commutative versions of a conjecture of Tachikawa, J. Pure Appl. Algebra 201 (2005), nos. 1-3, 218-239. · Zbl 1087.13010 · doi:10.1016/j.jpaa.2004.12.029
[8] W. Bruns, and J. Herzog, Cohen-Macaulay Rings, rev. ed., Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1998. · Zbl 0909.13005
[9] O. Celikbas, K.-i. Iima, A. Sadeghi, and R. Takahashi, On the ideal case of a conjecture of Auslander and Reiten, Bull. Sci. Math. 142, (2018), 94-107. · Zbl 1402.13017 · doi:10.1016/j.bulsci.2017.09.005
[10] O. Celikbas and R. Takahashi, Auslander-Reiten conjecture and Auslander-Reiten duality, J. Algebra 382 (2013), 100-114. · Zbl 1342.13022 · doi:10.1016/j.jalgebra.2013.02.007
[11] L. W. Christensen, and H. Holm, Algebras that satisfy Auslander’s condition on vanishing of cohomology, Math. Z. 265 (2010), no. 1, 21-40. · Zbl 1252.16008 · doi:10.1007/s00209-009-0500-4
[12] L. W. Christensen, and H. Holm, Vanishing of cohomology over Cohen-Macaulay rings, Manuscripta Math. 139 (2012), nos. 3-4, 535-544. · Zbl 1255.13009
[13] H. Dao, M. Eghbali, and J. Lyle, Hom and Ext, revisited, preprint, arXiv:1710.05123v4. · Zbl 1471.13026
[14] M. T. Dibaei and A. Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra 219 (2015), no. 10, 4458-4478. · Zbl 1317.13023 · doi:10.1016/j.jpaa.2015.02.027
[15] S. Goto and R. Takahashi, On the Auslander-Reiten conjecture for Cohen-Macaulay local rings, Proc. Amer. Math. Soc. 145 (2017), no. 8, 3289-3296. · Zbl 1374.13022 · doi:10.1090/proc/13487
[16] M. Hoshino, Modules without self-extensions and Nakayama’s conjecture, Arch. Math. (Basel) 43 (1984), no. 6, 493-500. · Zbl 0547.16014 · doi:10.1007/BF01190950
[17] C. Huneke and G. J. Leuschke, On a conjecture of Auslander and Reiten, J. Algebra 275 (2004), no. 2, 781-790. · Zbl 1096.13011 · doi:10.1016/j.jalgebra.2003.07.018
[18] C. Huneke, L. M. Şega, and N. Vraciu, Vanishing of Ext and Tor over some Cohen-Macaulay local rings, Illinois J. Math. 48 (2004), no. 1, 295-317. · Zbl 1043.13006 · doi:10.1215/ijm/1258136185
[19] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22-50. · Zbl 1115.16005 · doi:10.1016/j.aim.2006.06.002
[20] O. Iyama and M. Wemyss, A new triangulated category for rational surface singularities, Illinois J. Math. 55 (2011), no. 1, 325-341. · Zbl 1258.13015 · doi:10.1215/ijm/1355927039
[21] V. Maşek, Gorenstein dimension and torsion of modules over commutative Noetherian rings, Special issue in honor of Robin Hartshorne, Comm. Algebra 28 (2000), no. 12, 5783-5811. · Zbl 1002.13005 · doi:10.1080/00927870008827189
[22] T. Nakayama, On algebras with complete homology, Abh. Math. Semin. Univ. Hambg 22 (1958), 300-307. · Zbl 0082.03004 · doi:10.1007/BF02941960
[23] M. Ono and Y. Yoshino, An Auslander-Reiten principle in derived categories, J. Pure Appl. Algebra 221 (2017), no. 6, 1268-1278. · Zbl 1365.13026 · doi:10.1016/j.jpaa.2016.09.009
[24] H. Tachikawa, Quasi-Frobenius rings and generalizations, QF-3 and QF-1 rings, Notes by Claus Michael Ringel, Lecture Notes in Math. 351, Springer, Berlin, New York, 1973. · Zbl 0271.16004
[25] R. Takahashi, Remarks on modules approximated by G-projective modules, J. Algebra 301 (2006), no. 2, 748-780. · Zbl 1109.13012 · doi:10.1016/j.jalgebra.2005.09.033
[26] R. Takahashi, On G-regular local rings, Comm. Algebra 36 (2008), no. 12, 4472-4491. · Zbl 1156.13009 · doi:10.1080/00927870802179602
[27] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Math. Soc. Lecture Note Ser. 146, Cambridge University Press, Cambridge, 1990. · Zbl 0745.13003
[28] Y. Yoshino, Homotopy categories of unbounded complexes of projective modules, preprint, arXiv:1805.05705v1.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.