×

The \(k\)-tacnode process. (English) Zbl 1422.60137

Summary: The tacnode process is a universal behavior arising in nonintersecting particle systems and tiling problems. For Dyson Brownian bridges, the tacnode process describes the grazing collision of two packets of walkers. We consider such a Dyson sea on the unit circle with drift. For any \(k\in \mathbb{Z}\), we show that an appropriate double scaling of the drift and return time leads to a generalization of the tacnode process in which \(k\) particles are expected to wrap around the circle. We derive winding number probabilities and an expression for the correlation kernel in terms of functions related to the generalized Hastings-McLeod solutions to the inhomogeneous Painlevé-II equation. The method of proof is asymptotic analysis of discrete orthogonal polynomials with a complex weight.

MSC:

60J65 Brownian motion
35Q15 Riemann-Hilbert problems in context of PDEs
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33E17 Painlevé-type functions

References:

[1] Adler, M., Delépine, J., van Moerbeke, P.: Dyson’s nonintersecting Brownian motions with a few outliers. Commun. Pure Appl. Math. 62, 334-395 (2009) · Zbl 1166.60048 · doi:10.1002/cpa.20264
[2] Adler, M., Delépine, J., van Moerbeke, P., Vanhaecke, P.: A PDE for non-intersecting Brownian motions and applications. Adv. Math. 226, 1715-1755 (2011) · Zbl 1210.60090 · doi:10.1016/j.aim.2010.09.004
[3] Adler, M., Ferrari, P., van Moerbeke, P.: Nonintersecting random walks in the neighborhood of a symmetric tacnode. Ann. Probab. 41, 2599-2647 (2013) · Zbl 1279.60062 · doi:10.1214/11-AOP726
[4] Adler, M., Johansson, K., van Moerbeke, P.: Double Aztec diamonds and the tacnode process. Adv. Math. 252, 518-571 (2014) · Zbl 1335.60177 · doi:10.1016/j.aim.2013.10.012
[5] Adler, M., Orantin, N., van Moerbeke, P.: Universality for the Pearcey process. Phys. D 239, 924-941 (2010) · Zbl 1189.82085 · doi:10.1016/j.physd.2010.01.005
[6] Baik, J.: Painlevé formulas of the limiting distributions for non-null complex sample covariance matrices. Duke Math. J. 133, 205-235 (2006) · Zbl 1139.33006 · doi:10.1215/S0012-7094-06-13321-5
[7] Baik, J., Ben Arous, G., Péché, S.: Phase transitions of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643-1697 (2005) · Zbl 1086.15022 · doi:10.1214/009117905000000233
[8] Baik, J., Wang, D.: On the largest eigenvalue of a Hermitian random matrix model with spiked external source II: higher rank cases. Int. Math. Res. Not. IMRN 2013, 3304-3370 (2013) · Zbl 1315.15033 · doi:10.1093/imrn/rns136
[9] Bertola, M., Bothner, T.: Zeros of large degree Vorob’ev-Yablonski polynomials via a Hankel determinant identity. Int. Math. Res. Not. IMRN 2015, 9330-9399 (2015) · Zbl 1328.35196 · doi:10.1093/imrn/rnu239
[10] Bertola, M., Buckingham, R., Lee, S., Pierce, V.: Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. 146, 475-518 (2012) · Zbl 1241.82035 · doi:10.1007/s10955-011-0409-2
[11] Bertola, M., Cafasso, M.: The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices Theory Appl. 2, 1350003 (2013) · Zbl 1274.60154 · doi:10.1142/S2010326313500032
[12] Bertola, M., Lee, S.: First colonization of a spectral outpost in random matrix theory. Constr. Approx. 30, 225-263 (2009) · Zbl 1169.05385 · doi:10.1007/s00365-008-9026-y
[13] Bleher, P., Kuijlaars, A.: Large n limit of Gaussian random matrices with external source. III. Double scaling limit. Commun. Math. Phys. 270, 481-517 (2007) · Zbl 1126.82010 · doi:10.1007/s00220-006-0159-1
[14] Bleher, P., Liechty, K.: Uniform asymptotics for discrete orthogonal polynomials with respect to varying exponential weights on a regular infinite lattice. Int. Math. Res. Not. IMRN 2011, 342-386 (2011) · Zbl 1213.33013
[15] Buckingham, R., Liechty, K.: Nonintersecting Brownian bridges on the unit circle with drift. J. Funct. Anal. (2018). https://doi.org/10.1016/j.jfa.2018.05.021 · Zbl 1442.60080
[16] Buckingham, R., Miller, P.: The sine-Gordon equation in the semiclassical limit: critical behavior near a separatrix. J. Anal. Math. 118, 397-492 (2012) · Zbl 1307.35255 · doi:10.1007/s11854-012-0041-3
[17] Buckingham, R., Miller, P.: Large-degree asymptotics of rational Painlevé-II functions: critical behaviour. Nonlinearity 28, 1539-1596 (2015) · Zbl 1325.30034 · doi:10.1088/0951-7715/28/6/1539
[18] Chester, C., Friedman, B., Ursell, F.: An extension of the method of steepest descents. Proc. Camb. Philos. Soc. 53, 599-661 (1957) · Zbl 0082.28601 · doi:10.1017/S0305004100032655
[19] Claeys, T., Grava, T.: Solitonic asymptotics for the Korteweg – de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42, 2132-2154 (2010) · Zbl 1217.35159 · doi:10.1137/090779103
[20] Claeys, T., Kuijlaars, A., Vanlessen, M.: Multi-critical unitary random matrix ensembles and the general Painlevé II equation. Ann. Math. (2) 167, 601-641 (2008) · Zbl 1179.15037 · doi:10.4007/annals.2008.168.601
[21] Dai, D., Hu, W.: On the quasi-Ablowitz-Segur and quasi-Hastings-McLeod solutions of the inhomogeneous Painlevé II equation. Random Matrices Theory Appl. 7, 1840004 (2018) · Zbl 1416.33029 · doi:10.1142/S201032631840004X
[22] Deaño, A.: Large degree asymptotics of orthogonal polynomials with respect to an oscillatory weight on a bounded interval. J. Approx. Theory 186, 33-63 (2014) · Zbl 1298.33014 · doi:10.1016/j.jat.2014.07.004
[23] Deift, P.: Polynomials, Orthogonal, Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics 3. Amer. Math. Soc., Providence, RI (1998) · Zbl 0997.47033
[24] Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335-1425 (1999) · Zbl 0944.42013 · doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
[25] Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2) 137, 295-368 (1993) · Zbl 0771.35042 · doi:10.2307/2946540
[26] Deift, P., Zhou, X.: Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48, 277-337 (1995) · Zbl 0869.34047 · doi:10.1002/cpa.3160480304
[27] Delvaux, S.: Non-intersecting squared Bessel paths at a hard-edge tacnode. Commun. Math. Phys. 324, 715-766 (2013) · Zbl 1290.60076 · doi:10.1007/s00220-013-1815-x
[28] Delvaux, S.: The tacnode kernel: equality of Riemann-Hilbert and Airy resolvent formulas. Int. Math. Res. Not. IMRN 2018, 160-201 (2018) · Zbl 1407.82036 · doi:10.1093/imrn/rnv348
[29] Delvaux, S., Geudens, D., Zhang, L.: Universality and critical behaviour in the chiral two-matrix model. Nonlinearity 26, 2231-2298 (2013) · Zbl 1280.81153 · doi:10.1088/0951-7715/26/8/2231
[30] Delvaux, S., Kuijlaars, A., Zhang, L.: Critical behavior of nonintersecting Brownian motions at a tacnode. Commun. Pure Appl. Math. 64, 1305-1383 (2011) · Zbl 1231.60085 · doi:10.1002/cpa.20373
[31] Desrosiers, P., Forrester, P.: A note on biorthogonal ensembles. J. Approx. Theory 152, 167-187 (2008) · Zbl 1149.42014 · doi:10.1016/j.jat.2007.08.006
[32] Duits, M., Geudens, D.: A critical phenomenon in the two-matrix model in the quartic/quadratic case. Duke Math. J. 162, 1383-1462 (2013) · Zbl 1286.60006 · doi:10.1215/00127094-2208757
[33] Eynard, B., Mehta, M.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31, 4449-4456 (1998) · Zbl 0938.15012 · doi:10.1088/0305-4470/31/19/010
[34] Ferrari, P., Vető, B.: Non-colliding Brownian bridges and the asymmetric tacnode process. Electron. J. Probab. 17 (2012). https://doi.org/10.1214/EJP.v17-1811 · Zbl 1258.60011
[35] Flaschka, H., Newell, A.: Monodromy and spectrum-preserving deformations I. Commun. Math. Phys. 76, 65-116 (1980) · Zbl 0439.34005 · doi:10.1007/BF01197110
[36] Fokas, A., Its, A., Kapaev, A., Novokshenov, V.: Painlevé Transcendents Approach. The Riemann-Hilbert Approach. AMS Mathematical Surveys and Mongraphs, vol. 128. Amer. Math. Soc., Providence (2006) · Zbl 1111.34001 · doi:10.1090/surv/128
[37] Fokas, A., Its, A., Kitaev, A.: Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 142, 313-344 (1991) · Zbl 0742.35047 · doi:10.1007/BF02102066
[38] Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300-321 (1985) · Zbl 0579.05004 · doi:10.1016/0001-8708(85)90121-5
[39] Geudens, D., Zhang, L.: Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel. Int. Math. Res. Not. IMRN 2015, 5733-5782 (2015) · Zbl 1341.60127 · doi:10.1093/imrn/rnu105
[40] Girotti, M.: Asymptotics of the tacnode process: a transition between the gap probabilities from the tacnode to the Airy process. Nonlinearity 27, 1937-1968 (2014) · Zbl 1305.60073 · doi:10.1088/0951-7715/27/8/1937
[41] Huybrechs, D., Kuijlaars, A., Lejon, N.: Zero distribution of complex orthogonal polynomials with respect to exponential weights. J. Approx. Theory 184, 28-54 (2014) · Zbl 1297.42037 · doi:10.1016/j.jat.2014.05.002
[42] Its, A., Kapaev, A.: Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16, 363-386 (2003) · Zbl 1048.34146 · doi:10.1088/0951-7715/16/1/321
[43] Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407-448 (1981) · Zbl 1194.34166 · doi:10.1016/0167-2789(81)90021-X
[44] Johansson, K.: Non-colliding Brownian motions and the extended tacnode process. Commun. Math. Phys. 319, 231-267 (2013) · Zbl 1268.60104 · doi:10.1007/s00220-012-1600-2
[45] Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141-1164 (1959) · Zbl 0092.34503 · doi:10.2140/pjm.1959.9.1141
[46] Kuijlaars, A.: The tacnode Riemann-Hilbert problem. Constr. Approx. 39, 197-222 (2014) · Zbl 1304.30052 · doi:10.1007/s00365-013-9225-z
[47] Kuijlaars, A., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths: critical time and double scaling limit. Commun. Math. Phys. 308, 227-279 (2011) · Zbl 1245.60044 · doi:10.1007/s00220-011-1322-x
[48] Liechty, K.: Nonintersecting Brownian motions on the half line and discrete Gaussian orthogonal polynomials. J. Stat. Phys. 147, 582-622 (2012) · Zbl 1244.82065 · doi:10.1007/s10955-012-0485-y
[49] Liechty, K., Wang, D.: Nonintersecting Brownian motions on the unit circle. Ann. Probab. 44, 1134-1211 (2016) · Zbl 1342.60138 · doi:10.1214/14-AOP998
[50] Liechty, K., Wang, D.: Two Lax systems for the Painlevé II equation, and two related kernels in random matrix theory. SIAM J. Math. Anal. 48, 3618-3666 (2016) · Zbl 1353.34111 · doi:10.1137/16M1056080
[51] Liechty, K., Wang, D.: Nonintersecting Brownian bridges between reflecting or absorbing walls. Adv. Math. 309, 155-208 (2017) · Zbl 1407.60111 · doi:10.1016/j.aim.2016.10.024
[52] Lindström, B.: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85-90 (1973) · Zbl 0262.05018 · doi:10.1112/blms/5.1.85
[53] Mehta, M.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004) · Zbl 1107.15019
[54] Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[55] Tracy, C., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381-400 (2006) · Zbl 1129.82031 · doi:10.1007/s00220-005-1506-3
[56] Tracy, C., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953-979 (2007) · Zbl 1124.60081 · doi:10.1214/105051607000000041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.