×

Asymptotics and oscillation of higher-order functional dynamic equations with Laplacian and deviating arguments. (English) Zbl 1422.34192

Summary: In this paper, we deal with the asymptotics and oscillation of the solutions of higher-order nonlinear dynamic equations with Laplacian and mixed nonlinearities of the form \[ \begin{aligned} &\bigl\{ r_{n-1}(t) \phi_{\alpha_{n-1}} \bigl[\bigl(r_{n-2}(t) \bigl(\cdots\bigl(r_{1}(t) \phi_{\alpha_{1}} \bigl[x^{\Delta}(t) \bigr] \bigr)^{\Delta}\cdots\bigr)^{\Delta} \bigr)^{\Delta } \bigr] \bigr\} ^{\Delta} \\& +\sum_{\nu=0}^{N}p_{\nu} ( t )\phi _{\gamma _{\nu}} \bigl( x \bigl(g_{\nu}(t) \bigr) \bigr) =0 \end{aligned} \] on an above-unbounded time scale. By using a generalized Riccati transformation and integral averaging technique we study asymptotic behavior and derive some new oscillation criteria for the cases without any restrictions on \(g(t)\) and \(\sigma(t)\) and when \(n\) is even and odd. Our results obtained here extend and improve the results of D.-X. Chen and P.-X. Qu [J. Appl. Math. Comput. 44, No. 1–2, 357–377 (2014; Zbl 1303.34073)] and S. Y. Zhang et al. [“Asymptotics and oscillation of \(n\)th-order nonlinear dynamic equations on time scales”, Appl. Math. Comput. 275, 324–334 (2016; doi:10.1016/j.amc.2015.11.084)].

MSC:

34K11 Oscillation theory of functional-differential equations
34N05 Dynamic equations on time scales or measure chains
39A10 Additive difference equations
39A21 Oscillation theory for difference equations

Citations:

Zbl 1303.34073

References:

[1] Chen, DX, Qu, PX: Oscillation of even order advanced type dynamic equations with mixed nonlinearities on time scales. J. Appl. Math. Comput. 44(1-2), 357-377 (2014) · Zbl 1303.34073 · doi:10.1007/s12190-013-0697-6
[2] Zhang, SY, Wang, QR, Kong, Q: Asymptotics and oscillation of nth-order nonlinear dynamic equations on time scales. Appl. Math. Comput. 275, 324-334 (2016) · Zbl 1410.34273
[3] Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001) · Zbl 0978.39001 · doi:10.1007/978-1-4612-0201-1
[4] Bohner, M, Peterson, A (eds.): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) · Zbl 1025.34001
[5] Grace, SR, Agarwal, R, Zafer, A: Oscillation of higher order nonlinear dynamic equations on time scales. Adv. Differ. Equ. 2012, 67 (2012) · Zbl 1293.34113 · doi:10.1186/1687-1847-2012-67
[6] Wu, X, Sun, T, Xi, H, Chen, C: Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales. Adv. Differ. Equ. 2013, 248 (2013) · Zbl 1375.34129 · doi:10.1186/1687-1847-2013-248
[7] Sun, T, Yu, W, He, Q: New oscillation criteria for higher order delay dynamic equations on time scales. Adv. Differ. Equ. 2014, 328 (2014) · Zbl 1417.34159 · doi:10.1186/1687-1847-2014-328
[8] Sun, T, He, Q, Xi, H, Yu, W: Oscillation for higher order dynamic equations on time scales. Abstr. Appl. Anal. 2013, Article ID 268721 (2013) · Zbl 1298.34177
[9] Hassan, TS, Kong, Q: Asymptotic and oscillatory behavior of nth-order half-linear dynamic equations. Differ. Equ. Appl. 6(4), 527-549 (2014) · Zbl 1310.34123
[10] Grace, SR, Hassan, TS: Oscillation criteria for higher order nonlinear dynamic equations. Math. Nachr. 287(14-15), 1659-1673 (2014) · Zbl 1304.34159 · doi:10.1002/mana.201300157
[11] Hassan, TS: Oscillation criteria for higher order quasilinear dynamic equations with Laplacians and a deviating argument. J. Egypt. Math. Soc. Available online 25 November 2016
[12] Huang, XY: Oscillatory behavior of N-th-order neutral dynamic equations with mixed nonlinearities on time scales. Electron. J. Differ. Equ. 2016, 16 (2016) · Zbl 1329.34146 · doi:10.1186/s13662-016-0756-z
[13] Erbe, L, Mert, R, Peterson, A, Zafer, A: Oscillation of even order nonlinear delay dynamic equations on time scales. Czechoslov. Math. J. 63(138)(1), 265-279 (2013) · Zbl 1274.34262 · doi:10.1007/s10587-013-0017-1
[14] Mert, R: Oscillation of higher-order neutral dynamic equations on time scales. Adv. Differ. Equ. 2012, 68 (2012) · Zbl 1294.34086 · doi:10.1186/1687-1847-2012-68
[15] Sun, T, Yu, W, Xi, H: Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales. J. Appl. Math. Inform. 30(1-2), 289-304 (2012) · Zbl 1241.34100
[16] Karpuz, B: Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. Electron. J. Qual. Theory Differ. Equ. 2009, 34 (2009) · Zbl 1184.34072
[17] Erbe, L, Karpuz, B, Peterson, A: Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations. Int. J. Difference Equ. 6(1), 1-16 (2011)
[18] Sun, Y, Hassan, TS: Comparison criteria for odd order forced nonlinear functional neutral dynamic equations. Appl. Math. Comput. 251, 387-395 (2015) · Zbl 1328.34059
[19] Erbe, L, Jia, B, Peterson, A: Oscillation of nth order superlinear dynamic equations on time scales. Rocky Mt. J. Math. 41(2), 471-491 (2011) · Zbl 1216.34100 · doi:10.1216/RMJ-2011-41-2-471
[20] O’Regan, D, Hassan, TS: Oscillation criteria for solutions to nonlinear dynamic equations of higher order. Hacet. J. Math. Stat. 45(2), 417-427 (2016) · Zbl 1348.34143
[21] Tunç, E: Oscillation results for even order functional dynamic equations on time scales. Electron. J. Qual. Theory Differ. Equ. 2014, 27 (2014) · Zbl 1324.34196 · doi:10.1186/1687-1847-2014-27
[22] Zhang, C, Agarwal, RP, Li, T: Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 409(2), 1093-1106 (2014) · Zbl 1314.34141 · doi:10.1016/j.jmaa.2013.07.066
[23] Džurina, J, Baculíková, B: Oscillation and asymptotic behavior of higher-order nonlinear differential equations. Int. J. Math. Math. Sci. 2012, Article ID 951898 (2012) · Zbl 1254.34090
[24] Zhang, C, Li, T, Agarwal, RP, Bohner, M: Oscillation results for fourth-order nonlinear dynamic equations. Appl. Math. Lett. 25(12), 2058-2065 (2012) · Zbl 1260.34168 · doi:10.1016/j.aml.2012.04.018
[25] Agarwal, RP, Bohner, M, Li, T, Zhang, C: A Philos-type theorem for third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 249, 527-531 (2014) · Zbl 1338.34172
[26] Hassan, TS: Comparison criterion for even order forced nonlinear functional dynamic equations. Commun. Appl. Anal. 18, 109-122 (2014) · Zbl 1343.34211
[27] Agarwal, RP, Grace, SR, Hassan, TS: Oscillation criteria for higher order nonlinear functional dynamic equations with mixed nonlinearities. Commun. Appl. Anal. 19, 369-402 (2015)
[28] Hassan, TS, Grace, SR: Comparison criteria for nonlinear functional dynamic equations of higher order. Discrete Dyn. Nat. Soc. 2016, Article ID 6847956 (2016) · Zbl 1417.34157 · doi:10.1155/2016/6847956
[29] Saker, SH: Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math. 177, 375-387 (2005) · Zbl 1082.34032 · doi:10.1016/j.cam.2004.09.028
[30] Beckenbach, EF, Bellman, R: Inequalities. Springer, Berlin (1961) · Zbl 0097.26502 · doi:10.1007/978-3-642-64971-4
[31] Sun, YG, Wong, JS: Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities. J. Math. Anal. Appl. 334, 549-560 (2007) · Zbl 1125.34024 · doi:10.1016/j.jmaa.2006.07.109
[32] Hassan, TS, Kong, Q: Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities. Dyn. Syst. Appl. 20, 279-294 (2011) · Zbl 1251.34050
[33] Hassan, TS, Erbe, L, Peterson, A: Forced oscillation of second order functional differential equations with mixed nonlinearities. Acta Math. Sci. Ser. B 31, 613-626 (2011) · Zbl 1240.34310 · doi:10.1016/S0252-9602(11)60261-0
[34] Ozbekler, A, Zafer, A: Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations. Comput. Math. Appl. 61, 933-940 (2011) · Zbl 1217.34055 · doi:10.1016/j.camwa.2010.12.041
[35] Zhang, S, Wang, Q: Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 216(10), 2837-2848 (2010) · Zbl 1218.34112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.