×

Coupled fixed point theorems with applications to fractional evolution equations. (English) Zbl 1422.34073

Summary: In this paper, we first prove some coupled fixed point theorems in partially ordered \(\Phi\)-orbitally complete normed linear spaces. And then apply the obtained fixed point theorems to a class of semilinear evolution systems of fractional order for proving the existence of coupled mild solutions under some weaker monotone conditions. An example is given to illustrate the application of the abstract results.

MSC:

34A08 Fractional ordinary differential equations
47H10 Fixed-point theorems
26A33 Fractional derivatives and integrals

References:

[1] Agarwal, R; El-Gebeily, M; O’Regan, D, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87, 109-116, (2008) · Zbl 1140.47042 · doi:10.1080/00036810701556151
[2] Bhaskar, T; Lakshmikantham, V, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. TMA, 65, 1379-1393, (2006) · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017
[3] Dhage, B, A nonlinear alternative with applications to nonlinear perturbed differential equations, Nonlinear Stud., 13, 343-354, (2006) · Zbl 1120.47047
[4] Dhage, B, Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations, J. Differ. Equ. Appl., 2, 155-184, (2013) · Zbl 1279.45005
[5] Dhage, B, Partially continuous mappings in partially ordered normed linear spaces and applications to functional integral equations, Tamkang J. Math., 45, 397-426, (2014) · Zbl 1343.45004 · doi:10.5556/j.tkjm.45.2014.1512
[6] Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003) · Zbl 1025.47002 · doi:10.1007/978-0-387-21593-8
[7] Harjani, J; Sadarangani, K, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. TMA, 72, 1188-1197, (2010) · Zbl 1220.54025 · doi:10.1016/j.na.2009.08.003
[8] Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[9] Lakshmikantham, V; Ćirić, L, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. TMA, 70, 4341-4349, (2009) · Zbl 1176.54032 · doi:10.1016/j.na.2008.09.020
[10] Liang, J; Yang, H, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254, 20-29, (2015) · Zbl 1410.93022
[11] Luong, N; Thuan, N, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. TMA, 74, 983-992, (2011) · Zbl 1202.54036 · doi:10.1016/j.na.2010.09.055
[12] Nieto, J; Rodriguez-López, R, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22, 223-239, (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[13] Nieto, J; Rodriguez-López, R, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. Engl. Ser., 23, 2205-2212, (2007) · Zbl 1140.47045 · doi:10.1007/s10114-005-0769-0
[14] O’Regan, D; Petrusel, A, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., 341, 1241-1252, (2008) · Zbl 1142.47033 · doi:10.1016/j.jmaa.2007.11.026
[15] Ran, A; Reurings, M, A fixed point theorem in partially ordered sets and some applications to metric equations, Proc. Am. Math. Soc., 132, 1435-1443, (2003) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[16] Samet, B, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. TMA, 72, 4508-4517, (2010) · Zbl 1264.54068 · doi:10.1016/j.na.2010.02.026
[17] Zhou, Y; Jiao, F, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal., Real World Appl., 11, 4465-4475, (2010) · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.