×

Pore-scale modelling of Ostwald ripening. (English) Zbl 1421.76220

Summary: In a saturated solution with dispersed clusters of a second phase, the mechanism by which the larger clusters grow at the expense of the smaller ones is called Ostwald ripening. Although the mechanism is well understood in situations where multiple clusters of gas exist in a liquid solution, evolution is much more complicated to predict when the two phases interact with a solid matrix, since the solid plays a significant role in determining the shape of the interface. In this paper, we study capillary dominated regimes in porous media where the driving force is inter-cluster diffusion. By decomposing the Ostwald ripening mechanism into two processes that operate on different time scales – the diffusion of solute gas in the liquid and the readjustment of the shape of the gas-liquid interface to accommodate a change in mass – we develop a sequential algorithm to solve for the evolution of systems with multiple gas ganglia. In the absence of a solid matrix, thermodynamic equilibrium is reached when all of the gas phase aggregates to form one large bubble. In porous media on the other hand, we find that ripening can lead to equilibrium situations with multiple disconnected ganglia, and that evolution is highly dependent on initial conditions and the structure of the solid matrix. The fundamental difference between the two cases is in the relationship between mass and capillary pressure.

MSC:

76S05 Flows in porous media; filtration; seepage
76T10 Liquid-gas two-phase flows, bubbly flows
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Andrew, M.; Bijeljic, B.; Blunt, M. J., Pore-by-pore capillary pressure measurements using x-ray microtomography at reservoir conditions: curvature, snap-off, and remobilization of residual co2, Water Resour. Res., 50, 11, 8760-8774, (2014)
[2] Andrew, M.; Bijeljic, B.; Blunt, M. J., Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates, Intl J. Greenh. Gas Control, 22, 1-14, (2014)
[3] Armstrong, R. T.; Porter, M. L.; Wildenschild, D., Linking pore-scale interfacial curvature to column-scale capillary pressure, Adv. Water Resour., 46, 55-62, (2012)
[4] Arns, J.-Y.; Robins, V.; Sheppard, A. P.; Sok, R. M.; Pinczewski, W. V.; Knackstedt, M. A., Effect of network topology on relative permeability, Trans. Porous Med., 55, 1, 21-46, (2004)
[5] Bachu, S., Co2 storage in geological media: role, means, status and barriers to deployment, Prog. Energy Combust. Sci., 34, 2, 254-273, (2008)
[6] Bakke, S.; Øren, P.-E., 3-d pore-scale modelling of sandstones and flow simulations in the pore networks, SPE J., 2, 2, 136-149, (1997)
[7] Bear, J., Dynamics of Fluids in Porous Media, (1972), Elsevier · Zbl 1191.76001
[8] Benson, S. M.; Cole, D. R., Co2 sequestration in deep sedimentary formations, Elements, 4, 5, 325-331, (2008)
[9] Blunt, M. J., Flow in porous media – pore-network models and multiphase flow, Curr. Opin. Colloid Interface Sci., 6, 3, 197-207, (2001)
[10] Blunt, M. J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C., Pore-scale imaging and modelling, Adv. Water Resour., 51, 197-216, (2013)
[11] Cadogan, S. P.; Maitland, G. C.; Trusler, J. M., Diffusion coefficients of co2 and n2 in water at temperatures between 298.15 k and 423.15 k at pressures up to 45 mpa, J. Chem. Engng Data, 59, 2, 519-525, (2014)
[12] De Chalendar, J. A.2016a Impact of Ostwald ripening on residually trapped carbon dioxide. Master’s thesis, Stanford University.
[13] De Chalendar, J. A.2016b pnm-generation. GitHub repository. https://github.com/jdechalendar/pnm-generation.
[14] De Chalendar, J. A.; Garing, C.; Benson, S. M., Pore-scale considerations on Ostwald ripening in rocks, Energy Proc., 114C, 484-489, (2017)
[15] Chaudhary, K.; Bayani Cardenas, M.; Wolfe, W. W.; Maisano, J. A.; Ketcham, R. A.; Bennett, P. C., Pore-scale trapping of supercritical co2 and the role of grain wettability and shape, Geophys. Res. Lett., 40, 15, 3878-3882, (2013)
[16] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 1, 329-364, (1998) · Zbl 1398.76180
[17] Chiquet, P.; Daridon, J.-L.; Broseta, D.; Thibeau, S., Co2/water interfacial tensions under pressure and temperature conditions of co2 geological storage, Energy Convers. Manage., 48, 3, 736-744, (2007)
[18] Cnudde, V.; Boone, M. N., High-resolution x-ray computed tomography in geosciences: a review of the current technology and applications, Earth-Sci. Rev., 123, 1-17, (2013)
[19] Dias, M. M.; Payatakes, A. C., Network models for two-phase flow in porous media. Part 1. Immiscible microdisplacement of non-wetting fluids, J. Fluid Mech., 164, 305-336, (1986) · Zbl 0587.76172
[20] Dias, M. M.; Payatakes, A. C., Network models for two-phase flow in porous media. Part 2. Motion of oil ganglia, J. Fluid Mech., 164, 337-358, (1986) · Zbl 0587.76173
[21] Dominguez, A.; Bories, S.; Prat, M., Gas cluster growth by solute diffusion in porous media. Experiments and automaton simulation on pore network, Intl J. Multiphase Flow, 26, 12, 1951-1979, (2000) · Zbl 1137.76569
[22] Dong, H.; Blunt, M. J., Pore-network extraction from micro-computerized-tomography images, Phys. Rev. E, 80, 3, (2009)
[23] Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure, (2012), Academic
[24] Enick, R. M.; Klara, S. M., Co2 solubility in water and brine under reservoir conditions, Chem. Engng Commun., 90, 1, 23-33, (1990)
[25] Epstein, P. S.; Plesset, M. S., On the stability of gas bubbles in liquid – gas solutions, J. Chem. Phys., 18, 11, 1505-1509, (1950)
[26] Estrada-Alexanders, A. F.; Trusler, J. P. M., Speed of sound in carbon dioxide at temperatures between (220 and 450) k and pressures up to 14 mpa, J. Chem. Thermodyn., 30, 12, 1589-1601, (1998)
[27] Fatt, I., The network model of porous media, Trans. Soc. Petrol. Engrs AIME, 207, 144-181, (1956)
[28] Fischer, U.; Celia, M. A., Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model, Water Resour. Res., 35, 4, 1089-1100, (1999)
[29] Garing, C.; De Chalendar, J. A.; Voltolini, M.; Ajo-Franklin, J. B.; Benson, S. M., Pore-scale capillary pressure analysis using multi-scale x-ray micromotography, Adv. Water Res., 104, 223-241, (2017)
[30] Garing, C.; De Chalendar, J. A.; Voltolini, M.; Ajo-Franklin, J. B.; Benson, S. M., Pore-scale evolution of trapped co2 at early stages following imbibition using micro-ct imaging, Energy Proc., 114C, 4871-4877, (2017)
[31] Geistlinger, H.; Mohammadian, S.; Schlueter, S.; Vogel, H.-J., Quantification of capillary trapping of gas clusters using x-ray microtomography, Water Resour. Res., 50, 5, 4514-4529, (2014)
[32] Georgiadis, A.; Berg, S.; Makurat, A.; Maitland, G.; Ott, H., Pore-scale micro-computed-tomography imaging: nonwetting-phase cluster-size distribution during drainage and imbibition, Phys. Rev. E, 88, 3, (2013)
[33] Goldobin, D. S.; Brilliantov, N. V., Diffusive counter dispersion of mass in bubbly media, Phys. Rev. E, 84, 5, (2011)
[34] Greenwood, G. W., The growth of dispersed precipitates in solutions, Acta Metall., 4, 243-248, (1956)
[35] Haines, W. B., Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith, J. Agr. Sci, 20, 1, 97-116, (1930)
[36] Hirt, C. W.; Nichols, B. D., Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225, (1981) · Zbl 0462.76020
[37] Idowu, N. A.2009 Pore-scale modeling: stochastic network generation and modeling of rate effects in water flooding. A dissertation submitted in fulfillments of the requirements for the degree of philosophy of the Imperial College London.
[38] Idowu, N. A.; Blunt, M. J., Pore-scale modelling of rate effects in waterflooding, Trans. Porous Med., 83, 1, 151-169, (2010)
[39] Iglauer, S.; Paluszny, A.; Pentland, C. H.; Blunt, M. J., Residual co2 imaged with x-ray micro-tomography, Geophys. Res. Lett., 38, 21, (2011)
[40] Joekar-Niasar, V.; Hassanizadeh, S. M.; Dahle, H. K., Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling, J. Fluid Mech., 655, 38-71, (2010) · Zbl 1197.76133
[41] Joekar-Niasar, V.; Hassanizadeh, S. M.; Leijnse, A., Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-network modeling, Trans. Porous Med., 74, 2, 201-219, (2008)
[42] Kohl, A. L.; Nielsen, R., Gas Purification, (1997), Gulf Professional Publishing
[43] Krevor, S.; Blunt, M. J.; Benson, S. M.; Pentland, C. H.; Reynolds, C.; Al-Menhali, A.; Niu, B., Capillary trapping for geologic carbon dioxide storage – from pore scale physics to field scale implications, Intl J. Greenh. Gas Control, 40, 221-237, (2015)
[44] Lee, C. Y., An algorithm for path connections and its applications, IRE Trans. Electron. Computers, EC‐10, 3, 346-365, (1961)
[45] Li, X.; Yortsos, Y. C., Theory of multiple bubble growth in porous media by solute diffusion, Chem. Engng Sci., 50, 8, 1247-1271, (1995)
[46] Li, Y.-K.; Nghiem, L. X., Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and Henry’s law, Can. J. Chem. Engng, 64, 3, 486-496, (1986)
[47] Lifshitz, I. M.; Slyozov, V. V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 1-2, 35-50, (1961)
[48] Lindquist, W. B.; Lee, S.-M.; Coker, D. A.; Jones, K. W.; Spanne, P., Medial axis analysis of void structure in three-dimensional tomographic images of porous media, J. Geophys. Res.-Sol. Earth, 101, B4, 8297-8310, (1996)
[49] Linstrom, P. J. & Mallard, W. G.ed. 2005 NIST chemistry webbook, NIST standard reference database number 69. Gaithersburg MD, 20899: National Institute of Standards and Technology.
[50] 2014 Version 8.3.0 (R2014a). Natick, Massachusetts: The MathWorks Inc.
[51] Mcclure, J. E.; Berrill, M. A.; Gray, W. G.; Miller, C. T., Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems, Phys. Rev. E, 94, 3, (2016)
[52] Mcclure, J. E.; Berrill, M. A.; Gray, W. G.; Miller, C. T., Tracking interface and common curve dynamics for two-fluid flow in porous media, J. Fluid Mech., 796, 211-232, (2016) · Zbl 1462.76183
[53] Meakin, P.; Tartakovsky, A. M., Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media, Rev. Geophys., 47, (2009)
[54] Möller, J.; Jacob, K. I.; Schmelzer, J., Ostwald ripening in porous viscoelastic materials, J. Phys. Chem. Solids, 59, 6, 1097-1103, (1998)
[55] Øren, P.-E.; Bakke, S., Process based reconstruction of sandstones and prediction of transport properties, Trans. Porous Med., 46, 2-3, 311-343, (2002)
[56] Øren, P.-E.; Bakke, S.; Arntzen, O. J., Extending predictive capabilities to network models, SPE J., 3, 4, 324-336, (1998)
[57] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49, (1988) · Zbl 0659.65132
[58] Pereira, G. G.; Pinczewski, W. V.; Chan, D. Y. C.; Paterson, L.; Øren, P. E., Pore-scale network model for drainage-dominated three-phase flow in porous media, Trans. Porous Med., 24, 2, 167-201, (1996)
[59] Prodanović, M.; Bryant, S. L., A level set method for determining critical curvatures for drainage and imbibition, J. Colloid Interface Sci., 304, 2, 442-458, (2006)
[60] Raeini, A. Q.; Blunt, M. J.; Bijeljic, B., Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method, J. Comput. Phys., 231, 17, 5653-5668, (2012) · Zbl 1522.76092
[61] Rahman, T.; Lebedev, M.; Barifcani, A.; Iglauer, S., Residual trapping of supercritical co2 in oil-wet sandstone, J. Colloid Interface Sci., 469, 63-68, (2016)
[62] Schlüter, S.; Berg, S.; Li, T.; Vogel, H.-J.; Wildenschild, D., Time scales of relaxation dynamics during transient conditions in two-phase flow, Water Resour. Res, 53, 4709-4724, (2017)
[63] Schlüter, S.; Sheppard, A.; Brown, K.; Wildenschild, D., Image processing of multiphase images obtained via x-ray microtomography: a review, Water Resour. Res., 50, 4, 3615-3639, (2014)
[64] Schmelzer, J.; Möller, J., Ostwald ripening in porous materials: the case of arbitrary pore size distributions, J. Phys. Chem. Solids, 56, 8, 1013-1022, (1995)
[65] Schmelzer, J.; Schweitzer, F., Ostwald ripening of bubbles in liquid – gas solutions, J. Non-Equilib. Thermodyn., 12, 3, 255-270, (1987) · Zbl 0629.76113
[66] Silin, D.; Patzek, T., Pore space morphology analysis using maximal inscribed spheres, Physica A, 371, 2, 336-360, (2006)
[67] Sok, R. M.; Knackstedt, M. A.; Sheppard, A. P.; Pinczewski, W. V.; Lindquist, W. B.; Venkatarangan, A.; Paterson, L., Direct and stochastic generation of network models from tomographic images; effect of topology on residual saturations, Trans. Porous Med., 46, 2-3, 345-372, (2002)
[68] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 1, 146-159, (1994) · Zbl 0808.76077
[69] Tanino, Y.; Blunt, M. J., Capillary trapping in sandstones and carbonates: dependence on pore structure, Water Resour. Res., 48, 8, (2012)
[70] Thomson, W., 4. on the equilibrium of vapour at a curved surface of liquid, Proc. R. Soc. Edin., 7, 63-68, (1872) · JFM 07.0631.01
[71] Valvatne, P. H. & Blunt, M. J.2003Predictive pore-scale network modeling. In SPE Annu. Tech. Conf. Exhib. Denver, CO, 5-8 October 2003, Paper SPE-84550-MS, pp. 1-12. Society of Petroleum Engineers.
[72] Voorhees, P. W., The theory of Ostwald ripening, J. Stat. Phys., 38, 1-2, 231-252, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.