×

Minimum bisection is fixed-parameter tractable. (English) Zbl 1421.68069

Summary: In the classic Minimum Bisection problem we are given as input an undirected graph \(G\) and an integer \(k\). The task is to determine whether there is a partition of \(V(G)\) into two parts \(A\) and \(B\) such that \(||A|-|B||\leq 1\) and there are at most \(k\) edges with one endpoint in \(A\) and the other in \(B\). In this paper we give an algorithm for Minimum Bisection with running time \(2^{\mathcal{O}(k^3)}n^3\log^3n\). This is the first fixed parameter tractable algorithm for Minimum Bisection parameterized by \(k\). At the core of our algorithm lies a new decomposition theorem that states that every graph \(G\) can be decomposed by small separators into parts where each part is “highly connected” in the following sense: any separator of bounded size can separate only a limited number of vertices from each part of the decomposition. Our techniques generalize to the weighted setting, where we seek a bisection of minimum weight among solutions that contain at most \(k\) edges.

MSC:

68Q25 Analysis of algorithms and problem complexity
68R10 Graph theory (including graph drawing) in computer science
68W05 Nonnumerical algorithms

References:

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach., 42 (1995), pp. 844-856. · Zbl 0885.68116
[2] P. Bellenbaum and R. Diestel, Two short proofs concerning tree-decompositions, Combin. Probab. Comput., 11 (2002), pp. 541-547. · Zbl 1018.05081
[3] R. van Bevern, A. E. Feldmann, M. Sorge, and O. Suchý, On the parameterized complexity of computing graph bisections, in Proceedings of the 39th International Workshop on Graph Theoretic Concepts in Computer Science, 2013, pp. 76-87. · Zbl 1318.68098
[4] R. van Bevern, A. E. Feldmann, M. Sorge, and O. Suchý, On the parameterized complexity of computing balanced partitions in graphs, Theory Comput. Syst., 57 (2015), pp. 1-35. · Zbl 1329.68150
[5] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, Graph bisection algorithms with good average case behavior, Combinatorica, 7 (1987), pp. 171-191.
[6] T. N. Bui, C. Heigham, C. Jones, and F. T. Leighton, Improving the performance of the Kernighan-Lin and simulated annealing graph bisection algorithms, in Proceedings of the 26th ACM/IEEE Design Automation Conference, 1989, pp. 775-778.
[7] T. N. Bui and A. Peck, Partitioning planar graphs, SIAM J. Comput., 21 (1992), pp. 203-215, . · Zbl 0759.05089
[8] T. N. Bui and L. C. Strite, An ant system algorithm for graph bisection, in Proceedings of the Genetic and Evolutionary Computation Conference, 2002, pp. 43-51.
[9] J. Carmesin, R. Diestel, F. Hundertmark, and M. Stein, Connectivity and tree structure in finite graphs, Combinatorica, 34 (2014), pp. 11-46. · Zbl 1324.05104
[10] J. Chen, Y. Liu, and S. Lu, An improved parameterized algorithm for the minimum node multiway cut problem, Algorithmica, 55 (2009), pp. 1-13. · Zbl 1194.68168
[11] R Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk, Designing FPT algorithms for cut problems using randomized contractions, SIAM J. Comput., 45 (2016), pp. 1171-1229, . · Zbl 1348.68063
[12] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Minimum Bisection is fixed parameter tractable, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, 2014, pp. 323-332. · Zbl 1315.05134
[13] R. Diestel, Graph Theory, Springer, Berlin, 2012.
[14] U. Feige and R. Krauthgamer, A polylogarithmic approximation of the minimum bisection, SIAM J. Comput., 31 (2002), pp. 1090-1118, . · Zbl 1015.68240
[15] U. Feige, R. Krauthgamer, and K. Nissim, Approximating the minimum bisection size (extended abstract), in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000, pp. 530-536. · Zbl 1296.05162
[16] U. Feige and M. Mahdian, Finding small balanced separators, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 375-384. · Zbl 1301.68159
[17] M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, San Francisco, 1979. · Zbl 0411.68039
[18] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan, Finding topological subgraphs is fixed-parameter tractable, in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, 2011, pp. 479-488. · Zbl 1288.05058
[19] M. Grohe and D. Marx, Structure theorem and isomorphism test for graphs with excluded topological subgraphs, SIAM J. Comput., 44 (2015), pp. 114-159, . · Zbl 1314.05134
[20] K. Jansen, M. Karpinski, A. Lingas, and E. Seidel, Polynomial time approximation schemes for max-bisection on planar and geometric graphs, SIAM J. Comput., 35 (2005), pp. 110-119, . · Zbl 1087.90063
[21] K. Kawarabayashi and M. Thorup, The minimum \(k\)-way cut of bounded size is fixed-parameter tractable, in Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, 2011, pp. 160-169. · Zbl 1292.68094
[22] S. Khot and N. K. Vishnoi, The unique games conjecture, integrality gap for cut problems and embeddability of negative-type metrics into \(\ell_1\), J. ACM, 62 (2015), no. 1, 8. · Zbl 1321.68316
[23] D. Marx, Parameterized graph separation problems, Theoret. Comput. Sci., 351 (2006), pp. 394-406. · Zbl 1086.68104
[24] D. Marx, B. O’Sullivan, and I. Razgon, Finding small separators in linear time via treewidth reduction, ACM Trans. Algorithms, 9 (2013), no. 4, 30. · Zbl 1301.05337
[25] D. Marx and I. Razgon, Fixed-parameter tractability of multicut parameterized by the size of the cutset, SIAM J. Comput., 43 (2014), pp. 355-388, . · Zbl 1304.68078
[26] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse \(k\)-connected spanning subgraph of a \(k\)-connected graph, Algorithmica, 7 (1992), pp. 583-596. · Zbl 0763.05065
[27] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandomization, in Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, 1995, pp. 182-191. · Zbl 0938.68932
[28] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in Proceedings of the 40th ACM Symposium on Theory of Computing, 2008, pp. 255-264. · Zbl 1231.68051
[29] N. Robertson and P. D. Seymour, Graph minors XIII. The disjoint paths problem, J. Combin. Theory Ser. B, 63 (1995), pp. 65-110. · Zbl 0823.05038
[31] R. Thomas, A Menger-like property of tree-width: The finite case, J. Combin. Theory Ser. B, 48 (1990), pp. 67-76. · Zbl 0636.05022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.