×

Positivity of iterated sequences of polynomials. (English) Zbl 1420.05020

Summary: In this paper, we present some criteria for the 2-\(q\)-log-convexity and 3-\(q\)-log-convexity of combinatorial sequences, which can be regarded as the first column of a certain infinite triangular array \([A_{n,k}(q)]_{n,k\ge 0}\) of polynomials in \(q\) with nonnegative coefficients satisfying the recurrence relation \(A_{n,k}(q)=A_{n-1,k-1}(q)+g_k(q)A_{n-1,k}(q)+h_{k+1}(q)A_{n-1,k+1}(q)\). Those criteria can also be presented by continued fractions and generating functions. These allow a unified treatment of the 2-\(q\)-log-convexity of alternating Eulerian polynomials, 2-log-convexity of Euler numbers, and 3-\(q\)-log-convexity of many classical polynomials, including the Bell polynomials, the Eulerian polynomials of types \(A\) and \(B\), the \(q\)-Schröder numbers, \(q\)-central Delannoy numbers, the Narayana polynomials of types \(A\) and \(B\), the generating functions of rows in the Catalan triangles of Aigner and Shapiro, the generating functions of rows in the large Schröder triangle, and so on, which extend many known results for \(q\)-log-convexity.

MSC:

05A30 \(q\)-calculus and related topics
05A20 Combinatorial inequalities
11B37 Recurrences
11B83 Special sequences and polynomials
30B70 Continued fractions; complex-analytic aspects

References:

[1] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A, 87 (1999), pp. 33–51. · Zbl 0929.05004
[2] M. Aigner, Catalan and other numbers–a recurrent theme, in Algebraic Combinatorics and Computer Science, H. Crapo and D. Senato, eds., Springer, Berlin, 2001, pp. 347–390. · Zbl 0971.05002
[3] M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), pp. 2544–2563. · Zbl 1147.05002
[4] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle, and K. Seashore, Root polytopes and growth series of root lattices, SIAM J. Discrete Math., 25 (2011), pp. 360–378. · Zbl 1261.52010
[5] M. Benson, Growth series of finite extensions of \(Z_n\) are rational, Invent. Math., 73 (1983), pp. 251–269. · Zbl 0498.20022
[6] J. Bonin, L. Shapiro, and R. Simion, Some \(q\)-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths, J. Statist. Plann. Inference, 34 (1993), pp. 35–55. · Zbl 0783.05008
[7] G. Boros and V. Moll, Irresistible integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004. · Zbl 1090.11075
[8] P. Brändén, Iterated sequeces and the geometry of zeros, J. Reine Angew. Math, 658 (2011), pp. 115–131. · Zbl 1278.30007
[9] F. Brenti, Unimodal, Log-Concave, and Pólya Frequency Sequences in Combinatorics, Mem. Amer. Math. Soc. 413, 1989. · Zbl 0697.05011
[10] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update, Contemp. Math., 178 (1994), pp. 71–89. · Zbl 0813.05007
[11] F. Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A, 71 (1995), pp. 175–218. · Zbl 0851.05095
[12] F. Brenti, The applications of total positivity to combinatorics, and conversely, in Total Positivity and Its Applications (Jaca, 1994), Math. Appl. 359, Kluwer Academic, Dordrecht, The Netherlands, 1996, pp. 451–473. · Zbl 0895.05001
[13] L.M. Butler, The \(q\)-log concavity of \(q\)-binomial coeffcients, J. Combin. Theory Ser. A, 54 (1990), pp. 54–63. · Zbl 0718.05007
[14] D. Chebikin, Variations on descents and inversions in permutations, Electron. J. Combin., 15 (2008), R132. · Zbl 1179.05004
[15] W.Y.C. Chen, Log-concavity and q-Log-convexity Conjectures on the Longest Increasing Subsequences of Permutations, preprint, arXiv:0806.3392v2, 2008.
[16] W.Y.C. Chen, D.Q.J. Dou, and A.L.B. Yang, Brändén’s conjectures on the Boros-Moll polynomials, Int. Math. Res. Not. (IMRN), 20 (2013), pp. 4819–4828. · Zbl 1301.05007
[17] W.Y.C. Chen, R.L. Tang, L.X.W. Wang, and A.L.B. Yang, The \(q\)-log-convexity of the Narayana polynomials of type \(B\), Adv. Appl. Math., 44 (2010), pp. 85–110. · Zbl 1230.05276
[18] W.Y.C. Chen, L.X.W. Wang, and A.L.B. Yang, Schur positivity and the \(q\)-log-convexity of the Narayana polynomials, J. Algebraic Combin., 32 (2010), pp. 303–338. · Zbl 1230.05277
[19] W.Y.C. Chen, L.X.W. Wang, and A.L.B. Yang, Recurrence relations for strongly \(q\)-log-convex polynomials, Canad. Math. Bull., 54 (2011), pp. 217–229. · Zbl 1239.05190
[20] W.Y.C. Chen and E.X.W. Xia, 2-log-concavity of the Boros-Moll polynomials, Proc. Edinb. Math. Soc. (2), 56 (2013), pp. 701–722. · Zbl 1282.05019
[21] W.Y.C. Chen and E.X.W. Xia, The 2-log-convexity of the Apéry numbers, Proc. Amer. Math. Soc., 139 (2011), pp. 391–400. · Zbl 1290.05025
[22] G.-S. Cheon, H. Kim, and L.W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), pp. 2040–2049. · Zbl 1243.05007
[23] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980), pp. 125–161. · Zbl 0445.05014
[24] I. Gessel and G. Viennot, Binomial determinants, path, and hook length formulae, Adv. Math., 58 (1985), pp. 300–321. · Zbl 0579.05004
[25] T.-X. He, Parametric Catalan numbers and Catalan triangles, Linear Algebra Appl., 438 (2013), pp. 1467–1484. · Zbl 1257.05003
[26] S. Karlin, Total Positivity, Vol. I, Stanford University Press, Palo Alto, CA, 1968. · Zbl 0219.47030
[27] M. Kauers and P. Paule, A computer proof of Moll’s log-concavity conjecture, Proc. Amer. Math. Soc., 135 (2007), pp. 3847–3856. · Zbl 1126.33009
[28] P. Leroux, Reduced matrices and \(q\)-log concavity properties of \(q\)-Stirling numbers, J. Combin. Theory Ser. A, 54 (1990), pp. 64–84. · Zbl 0704.05003
[29] Z. Lin and J. Zeng, Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials, Adv. Appl. Math., 53 (2014), pp. 12–27. · Zbl 1281.05011
[30] L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. Appl. Math., 39 (2007), pp. 453–476. · Zbl 1131.05010
[31] S.-M. Ma and Y.-N. Yeh, Enumeration of permutations by number of alternating descents, Discrete Math, 339 (2016), pp. 1362–1367. · Zbl 1329.05015
[32] V.H. Moll, The evaluation of integrals: A personal story, Notices Amer. Math. Soc., 49 (2002), pp. 311–317. · Zbl 1126.11347
[33] P.R.W. McNamara and B.E. Sagan, Infinite log-concavity: Developments and conjectures, Adv. Appl. Math., 44 (2010), pp. 1–15. · Zbl 1184.05005
[34] A. Pinkus, Totally Positive Matrices, Cambridge University Press, Cambridge, 2010. · Zbl 1185.15028
[35] V. Reiner, Noncrossing partitions for classical reflection groups, Discrete Math., 177 (1992), pp. 195–222. · Zbl 0892.06001
[36] S. Roman, The Umbral Calculus, Academic Press, New York, 1984. · Zbl 0536.33001
[37] B.E. Sagan, Log concave sequences of symmetric functions and analogs of the Jacobi-Trudi determinants, Trans. Amer. Math. Soc., 329 (1992), pp. 795–811. · Zbl 0769.05097
[38] B.E. Sagan, Unimodality and the reflection principle, Ars Combin., 48 (1998), pp. 65–72. · Zbl 0962.05003
[39] L.W. Shapiro, S. Getu, W.-J. Woan, and L.C. Woodson, The Riordan group, Discrete Appl. Math., 34 (1991), pp. 229–239. · Zbl 0754.05010
[40] L.W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), pp. 83–90. · Zbl 0323.05004
[41] R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci., 576 (1989), pp. 500–534. · Zbl 0792.05008
[42] J.R. Stembridge, Nonintersecting paths, Pfaffians, and plane partitions, Adv. Math., 83 (1990), pp. 96–131. · Zbl 0790.05007
[43] R. Sulanke, The Narayana distribution, J. Statist. Plann. Inference, 101 (2002), pp. 311–326. · Zbl 1001.05009
[44] M. Josuat-Vergès, Enumeration of snakes and cycle-alternating permutations, Australas. J. Combin., 60 (2014), pp. 279–305. · Zbl 1305.05011
[45] H.S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, Princeton, NJ, 1948. · Zbl 0035.03601
[46] Y. Wang and Y.-N. Yeh, Polynomials with real zeros and Pólya frequency sequences, J. Combin. Theory Ser. A, 109 (2005), pp. 63–74. · Zbl 1057.05007
[47] Y. Wang and Y.-N. Yeh, Log-concavity and LC-positivity, J. Combin. Theory Ser. A, 114 (2007), pp. 195–210. · Zbl 1109.11019
[48] Y. Wang and B.-X. Zhu, Log-convex and Stieltjes moment sequences, Adv. Appl. Math., 81 (2016), pp. 115–127. · Zbl 1352.05034
[49] B.-X. Zhu and H. Sun, Linear transformations preserving the strong \(q\)-log-convexity of polynomials, Electron. J. Combin., 22 (2015), #P3.27. · Zbl 1323.05019
[50] B.-X. Zhu, Log-convexity and strong \(q\)-log-convexity for some triangular arrays, Adv. Appl. Math., 50 (2013), pp. 595–606. · Zbl 1277.05014
[51] B.-X. Zhu, Some positivities in certain triangular arrays, Proc. Amer. Math. Soc., 142 (2014), pp. 2943–2952. · Zbl 1305.05020
[52] B.-X. Zhu, Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), pp. 1297–1310. · Zbl 1379.05003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.