×

Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac-Coulomb system with \(Z > Z_{cr}\): vacuum charge density. (English. Russian original) Zbl 1419.81036

Theor. Math. Phys. 198, No. 3, 331-362 (2019); translation from Teor. Mat. Fiz. 198, No. 3, 381-417 (2019).
Summary: For a planar Dirac-Coulomb system with a supercritical axially symmetric Coulomb source with the charge \(Z > Z_{cr,1}\) and radius \(R_0\), we consider essentially nonperturbative vacuum-polarization effects. Based on a special combination of analytic methods, computer algebra, and numerical calculations used in our previous papers to study analogous effects in the one-dimensional “hydrogen atom,” we study the behavior of both the vacuum density \(\rho_{VP}(\vec{r})\) and the total induced charge and also the vacuum-polarization energy EVP. We mainly focus on divergences of the theory and the corresponding renormalization, on the convergence of partial series for \(\rho_{VP}(\vec{r})\) and \(\mathcal{E}_{VP}\), on the integer-valuedness of the total induced charge, and on the behavior of the vacuum energy in the overcritical region. In particular, we show that the renormalization via the fermion loop with two external legs turns out to be a universal method, which removes the divergence of the theory in the purely perturbative and essentially nonperturbative modes for \(\rho_{VP}\) and \(\mathcal{E}_{VP}\). The most important result is that for \(Z \gg Z_{cr,1}\) in such a system, the vacuum energy becomes a rapidly decreasing function of the source charge \(Z\), which reaches large negative values and whose behavior is estimated from below (in absolute value) as \(\sim -|\eta_{eff}Z^3|/R_0\). We also study the dependence of polarization effects on the cutoff of the Coulomb asymptotic form of the external field. We show that screening the asymptotic value significantly changes the structure and properties of the first partial channels with \(m_j = \pm1/2,\pm3/2\). We consider the nonperturbative calculation technique and the behavior of the induced density and the integral induced charge \(Q_{VP}\) in the overcritical region in detail.

MSC:

81T55 Casimir effect in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T10 Model quantum field theories
81V10 Electromagnetic interaction; quantum electrodynamics
Full Text: DOI

References:

[1] J. Reinhardt and W. Greiner, “Quantum electrodynamics of strong fields,” Rep. Progr. Phys., 40, 219-295 (1977). · doi:10.1088/0034-4885/40/3/001
[2] W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin (1985). · doi:10.1007/978-3-642-82272-8
[3] G. Plunien, B. Müller, and W. Greiner, “The Casimir effect,” Phys. Rep., 134, 87-193 (1986). · doi:10.1016/0370-1573(86)90020-7
[4] R. Ruffini, G. Vereshchagin, and S.-S. Xue, “Electron – positron pairs in physics and astrophysics: From heavy nuclei to black holes,” Phys. Rep., 487, 1-140 (2010); arXiv:0910.0974v3 [astro-ph.HE] (2009). · doi:10.1016/j.physrep.2009.10.004
[5] W. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer, Berlin (2012). · Zbl 0803.00010
[6] V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, and V. S. Popov, “Coulomb problem for a Z > Zcr,” Phys. Usp., 58, 785-791 (2015). · doi:10.3367/UFNe.0185.201508d.0845
[7] J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, and W. Greiner, “<Emphasis Type=”Italic“>Probing QED vacuum with heavy ions,” arXiv:1604.08690v1 [nucl-th] (2016).
[8] S. I. Godunov, B. Machet, and M. I. Vysotsky, “Resonances in positron scattering on a supercritical nucleus and spontaneous production of e+e − pairs,” Eur. Phys. J. C, 77, 782 (2017); arXiv:1707.07497v2 [hep-ph] (2017). · doi:10.1140/epjc/s10052-017-5325-4
[9] M. I. Katsnelson, “Nonlinear screening of charge impurities in graphene,” Phys. Rev. B, 74, 201401 (2006); arXiv:cond-mat/0609026v3 [cond-mat.mes-hall] (2006). · doi:10.1103/PhysRevB.74.201401
[10] A. V. Shytov, M. I. Katsnelson, and S. Levitov, “Vacuum polarization and screening of supercritical impurities in graphene,” Phys. Rev. Lett., 99, 236801 (2007); arXiv:0705.4663v2 [cond-mat.mes-hall] (2007). · doi:10.1103/PhysRevLett.99.236801
[11] K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett., 98, 076602 (2007). · doi:10.1103/PhysRevLett.98.076602
[12] V. N. Kotov, V. M. Pereira, and B. Uchoa, “Polarization charge distribution in gapped graphene: Perturbation theory and exact diagonalization analysis,” Phys. Rev. B, 78, 075433 (2008). · doi:10.1103/PhysRevB.78.075433
[13] V. M. Pereira, V. N. Kotov, and A. H. Castro Neto, “Supercritical Coulomb impurities in gapped graphene,” Phys. Rev. B, 78, 085101 (2008); arXiv:0803.4195v2 [cond-mat.mes-hall] (2008). · doi:10.1103/PhysRevB.78.085101
[14] I. F. Herbut, “Topological insulator in the core of the superconducting vortex in graphene,” Phys. Rev. Lett., 104, 066404 (2010). · doi:10.1103/PhysRevLett.104.066404
[15] Y. Wang, D. Wong, A. V. Shytov, V. W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan, A. Zettl, R. K. Kawakami, S. G. Louie, L. S. Levitov, and M. F. Crommie, “Observing atomic collapse resonances in artificial nuclei on graphene,” Science, 340, 734-737 (2013); arXiv:1510.02890v1 [cond-mat.mes-hall] (2015). · doi:10.1126/science.1234320
[16] Y. Nishida, “Vacuum polarization of graphene with a supercritical Coulomb impurity: Low-energy universality and discrete scale invariance,” Phys. Rev. B, 90, 165411 (2014); arXiv:1405.6299v2 [cond-mat.mes-hall] (2014). · doi:10.1103/PhysRevB.90.165414
[17] R. Barbieri, “Hydrogen atom in superstrong magnetic fields: Relativistic treatment,” Nucl. Phys. A, 161, 1-11 (1991). · doi:10.1016/0375-9474(71)90317-4
[18] V. P. Krainov, “A hydrogen-like atom in a superstrong magnetic field,” Sov. Phys. JETP, 37, 406 (1973).
[19] A. E. Shabad and V. V. Usov, “Positronium collapse and the maximum magnetic field in pure QED,” Phys. Rev. Lett., 96, 180401 (2006); arXiv:hep-th/0605020v1 (2006). · doi:10.1103/PhysRevLett.96.180401
[20] A. E. Shabad and V. V. Usov, “Bethe-Salpeter approach for relativistic positronium in a strong magnetic field,” Phys. Rev. D, 73, 125021 (2006); arXiv:hep-th/0603070v2 (2006). · doi:10.1103/PhysRevD.73.125021
[21] A. E. Shabad and V. V. Usov, “Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom,” Phys. Rev. D, 77, 025001 (2008); arXiv:0707.3475v3 [astro-ph] (2007). · doi:10.1103/PhysRevD.77.025001
[22] V. N. Oraevskii, A. I. Rez, and V. B. Semikoz, “Spontaneous production of positrons by a Coulomb center in a homogeneous magnetic field,” Sov. JETP, 45, 428-435 (1977).
[23] B. M. Karnakov and V. S. Popov, “A hydrogen atom in a superstrong magnetic field and the Zeldovich effect,” JETP, 97, 890-914 (2003). · doi:10.1134/1.1633946
[24] M. I. Vysotskii and S. I. Godunov, “Critical charge in a superstrong magnetic field,” Phys. Usp., 57, 194-198 (2014). · doi:10.3367/UFNe.0184.201402j.0206
[25] A. Davydov, K. Sveshnikov, and Yu. Voronina, “Vacuum energy of one-dimensional supercritical Dirac-Coulomb system,” Internat. J. Modern Phys. A, 32, 1750054 (2017); arXiv:1709.04239v1 [hep-th] (2017). · Zbl 1366.81261 · doi:10.1142/S0217751X17500543
[26] Yu. S. Voronina, A. S. Davydov, and K. A. Sveshnikov, “Vacuum effects for a one-dimensional ‘hydrogen atom’ with Z > Zcr,” Theor. Math. Phys., 193, 1647-1674 (2017). · Zbl 1387.81393 · doi:10.1134/S004057791711006X
[27] Yu. Voronina, A. Davydov, and K. Sveshnikov, “Nonperturbative effects of vacuum polarization for a quasi-onedimensional Dirac-Coulomb system with Z > Zcr,” Phys. Part. Nucl. Lett., 14, 698-712 (2017). · doi:10.1134/S1547477117050144
[28] Voronina, Yu. S.; Davydov, A. S.; Sveshnikov, K. A.; Grashin, P. A., Essential nonperturbative vacuumpolarization effects in a two-dimensional Dirac-Coulomb system for Z > Zcr: Vacuum-polarization energy (2019) · Zbl 1432.81058
[29] P. Gärtner, U. Heinz, B. Müller, and W. Greiner, “Limiting charge for electrostatic point sources,” Z. Phys. A, 300, 143-155 (1981). · doi:10.1007/BF01412291
[30] I. Aleksandrov, G. Plunien, and V. Shabaev, “Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions,” Eur. Phys. J. D, 70, 18 (2016); arXiv:1511.04346v1 [physics.atom-ph] (2015). · doi:10.1140/epjd/e2015-60644-y
[31] B. L. Voronov, D. M. Gitman, and I. V. Tyutin, “The Dirac Hamiltonian with a superstrong Coulomb field,” Theor. Math. Phys., 150, 34-72 (2007). · Zbl 1118.81027 · doi:10.1007/s11232-007-0004-5
[32] D. M. Gitman, I. V. Tyutin, and B. L. Voronov, Self-Adjoint Extensions in Quantum Mechanics (Progr. Math. Phys., Vol. 62), Springer, New York (2012). · Zbl 1263.81002 · doi:10.1007/978-0-8176-4662-2
[33] D. Gitman, A. Levin, I. Tyutin, and B. L. Voronov, “Electronic structure of super heavy atoms revisited,” Phys. Scr., 87, 038104 (2013). · Zbl 1266.81151 · doi:10.1088/0031-8949/87/03/038104
[34] V. R. Khalilov and I. V. Mamsurov, “Planar density of vacuum charge induced by a supercritical Coulomb potential,” Phys. Lett. B, 769, 152-158 (2017); arXiv:1604.01271v1 [hep-th] (2016). · Zbl 1370.81195 · doi:10.1016/j.physletb.2017.03.052
[35] A. Davydov, K. Sveshnikov, and Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system: I. Vacuum charge density,” Internat. J. Modern Phys. A, 33, 1850004 (2018); arXiv:1712.02704v1 [hep-th] (2017). · Zbl 1381.81126 · doi:10.1142/S0217751X18500045
[36] P. J. Mohr, G. Plunien, and G. Soff, “QED corrections in heavy atoms,” Phys. Rep., 293, 227-369 (1998). · doi:10.1016/S0370-1573(97)00046-X
[37] E. H. Wichmann and N. M. Kroll, “Vacuum polarization in a strong Coulomb field,” Phys. Rev., 101, 843-859 (1956). · Zbl 0070.22402 · doi:10.1103/PhysRev.101.843
[38] Y. Hosotani, “Spontaneously broken Lorentz invariance in three-dimensional gauge theories,” Phys. Lett. B, 319, 332-338 (1993); arXiv:hep-th/9308045v1 (1993). · doi:10.1016/0370-2693(93)90822-Y
[39] V. R. Khalilov and I. V. Mamsurov, “Vacuum polarization of planar charged fermions with Coulomb and Aharonov-Bohm potentials,” Modern Phys. Lett. A, 31, 1650032 (2016); arXiv:1509.02775v2 [cond-mat.meshall] (2015). · Zbl 1334.81114 · doi:10.1142/S0217732316500322
[40] H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953). · Zbl 0143.29202
[41] M. Gyulassy, “Higher order vacuum polarization for finite radius nuclei,” Nucl. Phys. A, 244, 497-525 (1975). · doi:10.1016/0375-9474(75)90554-0
[42] U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., 124, 1866-1878 (1962). · Zbl 0116.23405 · doi:10.1103/PhysRev.124.1866
[43] Yu. Voronina, K. Sveshnikov, P. Grashin, and A. Davydov, “Essentially non-perturbative and peculiar polarization effects in planar QED with strong coupling,” Phys. E, 106, 298-311 (2019); arXiv:1805.10688v2 [cond-mat.mes-hall] (2018). · doi:10.1016/j.physe.2018.08.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.