×

Electro-poroelastohydrodynamics of the endothelial glycocalyx layer. (English) Zbl 1419.76738

Summary: We consider pressure-driven flow of an ion-carrying viscous Newtonian fluid through a non-uniformly shaped channel coated with a charged deformable porous layer, as a model for blood flow through microvessels that are lined with an endothelial glycocalyx layer (EGL). The EGL is negatively charged and electrically interacts with ions dissolved in the blood plasma. The focus here is on the interplay between electrochemical effects, and the pressure-driven flow through the microvessel. To analyse these effects we use triphasic mixture theory (TMT) which describes the coupled dynamics of the fluid phase, the elastic EGL, ion transport within the fluid and electric fields within the microvessel. The resulting equations are solved numerically using a coupled boundary-finite element method (BEM-FEM) scheme. However, in the physiological regime considered here, ion concentrations and electric potentials vary rapidly over a thin transitional region (Debye layer) that straddles the lumen-EGL interface, which is difficult to resolve numerically. Accordingly we analyse this region asymptotically, to determine effective jump conditions across the interface for BEM-FEM computations within the bulk EGL/lumen. Our results demonstrate that ion-EGL electrical interactions can influence the near-wall flow, causing it to become reversed. This alters the stresses exerted upon the vessel wall, which has implications for the hypothesised role of the EGL as a transmitter of mechanical signals from the blood flow to the endothelial vessel surface.

MSC:

76Z05 Physiological flows
92C30 Physiology (general)
76M10 Finite element methods applied to problems in fluid mechanics
76M15 Boundary element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Arkill, K. P.; Neal, C. R.; Mantell, J. M.; Michel, C. C.; Qvortrup, K.; Rostgaard, J.; Bates, D. O.; Knupp, C.; Squire, J. M., 3d reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography, Microcirculation, 19, 343-351, (2012)
[2] Buschmann, M. D.; Grodzinsky, A. J., A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics, Trans. ASME J. Biomech. Engng, 117, 179-192, (1995)
[3] Cox, R. G., Electroviscous forces on a charged particle suspended in a flowing liquid, J. Fluid Mech., 338, 1-34, (1997) · Zbl 0890.76092
[4] Damiano, E. R.; Duling, B. R.; Ley, K.; Skalak, T. C., Axisymmetric pressure-driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer, J. Fluid Mech., 314, 163-189, (1996) · Zbl 0879.76100
[5] Damiano, E. R.; Stace, T. M., A mechano-electrochemical model of radial deformation of the capillary glycocalyx, Biophys. J., 82, 3, 1153-1175, (2002)
[6] Damiano, E. R.; Stace, T. M., Flow and deformation of the capillary glycocalyx in the wake of a leukocyte, Phys. Fluids, 17, (2005) · Zbl 1187.76113
[7] Dean, D.; Seog, J.; Ortiz, C.; Grodzinsky, A. J., Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans, Langmuir, 19, 13, 5526-5539, (2003)
[8] Donath, E.; Voigt, A., Streaming current and streaming potential on structured surfaces, J. Colloid Interface Sci., 109, 1, 122-139, (1986)
[9] Ehlers, W.; Blome, P., A triphasic model for unsaturated soil based on the theory of porous media, Math. Comput. Model., 37, 507-513, (2003) · Zbl 1069.74037
[10] Ehlers, W.; Bluhm, J., Porous Media: Theory, Experiments and Numerical Applications, (2002), Springer · Zbl 1001.00011
[11] Ehlers, W.; Karajan, N.; Markert, B., An extended biphasic model for charged hydrated tissues with application to the intervertebral disc, Biomech. Model. Mechanobiol., 8, 233-251, (2009)
[12] Frijns, A. J. H.; Huyghe, J. M.; Janssen, J. D., A validation of the quadriphase mixture theory for intervertebral disc tissue, Intl J. Engng. Sci., 35, 1419-1429, (1997) · Zbl 0916.73037
[13] Hariprasad, D. S.; Secomb, T. W., Motion of red blood cells near microvesselwalls: effects of a porous wall layer, J. Fluid Mech., 705, 195-212, (2012) · Zbl 1250.76192
[14] Holzapfel, G. A.; Ogden, R. W., Biomechanics: Trends in Modeling and Simulation, (2006), Springer
[15] Hou, J. S.; Holmes, M. H.; Lai, W. M.; Mow, V. C., Boundary conditions at cartilage-synovial fluid interface for joint lubrication and theoretical verifications, Trans. ASME J. Biomech. Engng, 111, 1, 78-87, (1989)
[16] Kilic, M. S.; Bazant, M. Z., Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging, Phys. Rev. E, 75, (2007)
[17] Kolev, N., Multiphase Flow Dynamics, Vol 1: Fundamentals, (2002), Springer · Zbl 1016.76001
[18] Lai, W. M.; Hou, J. S.; Mow, V. C., A triphasic theory for the swelling and deformation behaviors of articular cartilage, Trans. ASME J. Biomech. Engng, 113, 245-258, (1991)
[19] Landau, L. D.; Lifshitz, E. M., Electrodynamics of Continuous Media, (1960), Pergamon Press · Zbl 0122.45002
[20] Lee, T. C.; Long, D. S.; Clarke, R. J., Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics, J. Fluid Mech., 798, 812-852, (2016) · Zbl 1422.76212
[21] Liu, M.; Yang, J., Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels, Microvasc. Res., 78, 14-19, (2009)
[22] Masliyah, J. H.; Bhattacharjee, S., Electrokinetic and Colloid Transport Phenomena, (2006), John Wiley and Sons
[23] Mokady, A. J.; Mestel, A. J.; Winlove, C. P., Flow through a charged biopolymer layer, J. Fluid Mech., 383, 353-378, (1999) · Zbl 0930.76100
[24] Oomens, C. W. J.; De Heus, H. J.; Huyghe, J. M.; Nelissen, L.; Janssen, J. D., Validation of the triphasic mixture theory for a mimic of intervertebral disk tissue, Biomimetics, 3, 171-185, (1995)
[25] Pries, A. R.; Secomb, T. W.; Gaehtgens, P., The endothelial surface layer, Pflügers Arch., 440, 5, 653-666, (2000)
[26] Sawyer, P. N. & Stanczewski, B.1976Electrokinetic processes on natural and artificial blood vessels. In Blood Vessels:Problems Arising at the Borders of Natural and Artificial Blood Vessels (ed. Effert, S. & Meyer-Erkelenz, J. D.), pp. 143-157. Springer.
[27] Secomb, T. W.; Hsu, R.; Pries, A. R., A model for red blood cell motion in glycocalyx-lined capillaries, Am. J. Physiol. Heart Circ. Physiol., 274, 3, H1016-H1022, (1998)
[28] Secomb, T. W.; Hsu, R.; Pries, A. R., Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells, Biorheology, 38, 2-3, 143-150, (2001)
[29] Sharan, M.; Popel, A. S., A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall, Biorheology, 38, 415-428, (2001)
[30] Silberberg, A., Polyelectrolytes at the endothelial cell surface, Biophys. Chem., 41, 9-13, (1991)
[31] Squire, J. M.; Chew, M.; Nneji, G.; Neal, C.; Barry, J.; Michel, C., Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering?, J. Struct. Biol., 136, 3, 239-255, (2001)
[32] Stace, T. M.; Damiano, E. R., An electrochemical model of the transport of charged molecules through the capillary glycocalyx, Biophys. J., 80, 1670-1690, (2001)
[33] Sumets, P. P., Cater, J. E., Long, D. S. & Clarke, R. J.2015A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx. Proc. R. Soc. Lond. A471 (2179), doi:10.1098/rspa.2014.0955. · Zbl 1371.76176
[34] Tarbell, J. M.; Pahakis, M. Y., Mechanotransduction and the glycocalyx, J. Intl Med., 259, 4, 339-350, (2006)
[35] Vincent, P. E.; Sherwin, S. J.; Weinberg, P. D., The effect of the endothelial glycocalyx layer on concentration polarisation of low density lipoproteins in arteries, J. Theor. Biol., 265, 1, 1-17, (2010) · Zbl 1406.92163
[36] Wei, H. H.; Waters, S. L.; Liu, S. Q.; Grotberg, J. B., Flow in a wavy-walled channel lined with a poroelastic layer, J. Fluid Mech., 492, 23-45, (2003) · Zbl 1063.76689
[37] Weinbaum, S.; Tarbell, J. M.; Damiano, E. R., The structure and function of the endothelial glycocalyx layer, Annu. Rev. Biomed. Engng, 9, 121-167, (2007)
[38] Yariv, E.; Schnitzer, O.; Frankel, I., Streaming-potential phenomena in the thin-debye-layer limit. Part 1. General theory, J. Fluid Mech., 685, 306-334, (2011) · Zbl 1241.76463
[39] Zhou, X.; Hon, Y. C.; Sun, S.; Mak, A. F. T., Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field, Smart Mater. Struct., 11, 459-467, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.