×

Optimal heat transfer enhancement in plane Couette flow. (English) Zbl 1419.76393

Summary: Optimal heat transfer enhancement has been explored theoretically in plane Couette flow. The vector field (referred to as the ‘velocity’) to be optimised is time independent and divergence free, and temperature is determined in terms of the velocity as a solution to an advection-diffusion equation. The Prandtl number is set to unity, and consistent boundary conditions are imposed on the velocity and the temperature fields. The excess of a wall heat flux (or equivalently total scalar dissipation) over total energy dissipation is taken as an objective functional, and by using a variational method the Euler-Lagrange equations are derived, which are solved numerically to obtain the optimal states in the sense of maximisation of the functional. The laminar conductive field is an optimal state at low Reynolds number \(Re\sim 10^0\). At higher Reynolds number \(Re\sim 10^1\), however, the optimal state exhibits a streamwise-independent two-dimensional velocity field. The two-dimensional field consists of large-scale circulation rolls that play a role in heat transfer enhancement with respect to the conductive state as in thermal convection. A further increase of the Reynolds number leads to a three-dimensional optimal state at \(Re>rsim 10^2\). In the three-dimensional velocity field there appear smaller-scale hierarchical quasi-streamwise vortex tubes near the walls in addition to the large-scale rolls. The streamwise vortices are tilted in the spanwise direction so that they may produce the anticyclonic vorticity antiparallel to the mean-shear vorticity, bringing about significant three-dimensionality. The isotherms wrapped around the tilted anticyclonic vortices undergo the cross-axial shear of the mean flow, so that the spacing of the wrapped isotherms is narrower and so the temperature gradient is steeper than those around a purely streamwise (two-dimensional) vortex tube, intensifying scalar dissipation and so a wall heat flux. Moreover, the tilted anticyclonic vortices induce the flow towards the wall to push low- (or high-) temperature fluids on the hot (or cold) wall, enhancing a wall heat flux. The optimised three-dimensional velocity fields achieve a much higher wall heat flux and much lower energy dissipation than those of plane Couette turbulence.

MSC:

76F70 Control of turbulent flows
76F25 Turbulent transport, mixing
76F10 Shear flows and turbulence
76M30 Variational methods applied to problems in fluid mechanics

References:

[1] Ahlers, G.; Bodenschatz, E.; Funfschilling, D.; Grossmann, S.; He, X.; Lohse, D.; Stevens, R.; Verzicco, R., Logarithmic temperature profiles in turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 109, (2012) · doi:10.1103/PhysRevLett.109.114501
[2] Ahlers, G.; Bodenschatz, E.; He, X., Logarithmic temperature profiles of turbulent Rayleigh-Bénard convection in the classical and ultimate state for a Prandtl number of 0.8, J. Fluid Mech., 758, 436-467, (2014) · doi:10.1017/jfm.2014.543
[3] Bewley, T. R.; Moin, P.; Temam, R., DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms, J. Fluid Mech., 447, 179-225, (2001) · Zbl 1036.76027 · doi:10.1017/S0022112001005821
[4] Busse, F. H., On Howard’s upper bound for heat transport by turbulent convection, J. Fluid Mech., 37, 457-477, (1969) · Zbl 0175.52602 · doi:10.1017/S0022112069000668
[5] Busse, F. H., Bounds for turbulent shear flow, J. Fluid Mech., 41, 219-240, (1970) · Zbl 0198.30501 · doi:10.1017/S0022112070000599
[6] Chilton, T. H.; Colburn, A. P., Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction, Ind. Engng Chem., 26, 1183-1187, (1934) · doi:10.1021/ie50299a012
[7] Dipprey, D. F.; Sabersky, R. H., Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers, J. Heat Mass Transfer, 6, 329-353, (1963) · doi:10.1016/0017-9310(63)90097-8
[8] Doering, C. R.; Constantin, P., Energy dissipation in shear driven turbulence, Phys. Rev. Lett., 69, 1648-1651, (1992) · doi:10.1103/PhysRevLett.69.1648
[9] Doering, C. R.; Constantin, P., Variational bounds on energy dissipation in incompressible flows. I. Shear flow, Phys. Rev. E, 49, 5, 4087-4099, (1994) · doi:10.1103/PhysRevE.49.4087
[10] Doering, C. R.; Constantin, P., Variational bounds on energy dissipation in incompressible flows. III. Convection, Phys. Rev. E, 53, 6, 5957-5981, (1996) · doi:10.1103/PhysRevE.53.5957
[11] Doering, C. R.; Otto, F.; Reznikoff, M. G., Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Bénard convection, J. Fluid Mech., 560, 229-241, (2006) · Zbl 1122.76080 · doi:10.1017/S0022112006000097
[12] Hasegawa, Y.; Kasagi, N., Dissimilar control of momentum and heat transfer in a fully developed turbulent channel flow, J. Fluid Mech., 683, 57-93, (2011) · Zbl 1241.76304 · doi:10.1017/jfm.2011.248
[13] Hassanzadeh, P.; Chini, G. P.; Doering, C. R., Wall to wall optimal transport, J. Fluid Mech., 751, 627-662, (2014) · Zbl 1329.74253 · doi:10.1017/jfm.2014.306
[14] Howard, L. N., Heat transport by turbulent convection, J. Fluid Mech., 17, 405-432, (1963) · Zbl 0132.42501 · doi:10.1017/S0022112063001427
[15] Ierley, G. R.; Kerswell, R. R.; Plasting, S. C., Infinite-Prandtl-number convection. Part 2. A singular limit of upper bound theory, J. Fluid Mech., 560, 159-228, (2006) · Zbl 1161.76580 · doi:10.1017/S0022112006000450
[16] Kasagi, N.; Hasegawa, Y.; Fukagata, K.; Iwamoto, K., Control of turbulent transport less friction and more heat transfer, Trans. ASME J. Heat Transfer, 134, (2012) · doi:10.1115/1.4005151
[17] Kasagi, N.; Suzuki, Y.; Fukagata, K., Microelectromechanical systems-based feedback control of turbulence for skin friction reduction, Annu. Rev. Fluid Mech., 41, 231-251, (2009) · Zbl 1157.76022 · doi:10.1146/annurev.fluid.010908.165221
[18] Kawahara, G., Energy dissipation in spiral vortex layers wrapped around a straight vortex tube, Phys. Fluids, 17, (2005) · Zbl 1187.76261
[19] Kawahara, G.; Kida, S.; Tanaka, M.; Yanase, S., Wrap, tilt and stretch of vorticity lines around a strong thin straight vortex tube in a simple shear flow, J. Fluid Mech., 353, 115-162, (1997) · Zbl 0913.76026 · doi:10.1017/S0022112097007246
[20] Kerswell, R. R., New results in the variational approach to turbulent Boussinesq convection, Phys. Fluids, 13, 192-209, (2001) · Zbl 1184.76277 · doi:10.1063/1.1327295
[21] Malkus, W. V. R., The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond. A, 225, 196-212, (1954) · Zbl 0058.20203 · doi:10.1098/rspa.1954.0197
[22] Moore, D. W., The interaction of a diffusing line vortex and an aligned shear flow, Proc. R. Soc. Lond. A, 399, 367-375, (1985) · Zbl 0565.76036 · doi:10.1098/rspa.1985.0061
[23] Nicodemus, R.; Grossmann, S.; Holthaus, M., Improved variational principle for bounds on energy dissipation in turbulent shear flow, Physica D, 101, 178-190, (1997) · Zbl 0895.76037 · doi:10.1016/S0167-2789(96)00210-2
[24] Nicodemus, R.; Grossmann, S.; Holthaus, M., The background flow method. Part 1. Constructive approach to bounds on energy dissipation, J. Fluid Mech., 363, 281-300, (1998) · Zbl 0923.76058 · doi:10.1017/S0022112098001165
[25] Nicodemus, R.; Grossmann, S.; Holthaus, M., The background flow method. Part 2. Asymptotic theory of dissipation bounds, J. Fluid Mech., 363, 301-323, (1998) · Zbl 0923.76058 · doi:10.1017/S0022112098001177
[26] Otero, J.; Wittenberg, R. W.; Worthing, R. A.; Doering, C. R., Bounds on Rayleigh-Bénard convection with an imposed heat flux, J. Fluid Mech., 473, 191-199, (2002) · Zbl 1026.76048 · doi:10.1017/S0022112002002410
[27] Plasting, S. C.; Kerswell, R. R., Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse’s problem and the Constantin-Doering-Hopf problem with one-dimensional background field, J. Fluid Mech., 477, 363-379, (2003) · Zbl 1063.76623 · doi:10.1017/S0022112002003361
[28] Reynolds, O., On the extent and action of the heating surface of steam boilers, Proc. Lit. Phil. Soc. Manchester, 14, 7-12, (1874)
[29] Robertson, J. M.; Johnson, H. F., Turbulence structure in plane Couette flow, ASCE J. Engng Mech. Div. Proc., 96, 1171-1182, (1970)
[30] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869, (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[31] Sasamori, M.; Mamori, H.; Iwamoto, K.; Murata, A., Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow, Exp. Fluids, 55, (2014) · doi:10.1007/s00348-014-1828-z
[32] Sondak, D.; Smith, L. M.; Waleffe, F., Optimal heat transport solutions for Rayleigh-Bénard convection, J. Fluid Mech., 784, 565-595, (2015) · Zbl 1382.76237 · doi:10.1017/jfm.2015.615
[33] Souza, A. N.2016 An optimal control approach to bounding transport properties of thermal convection. PhD thesis, University of Michigan.
[34] Souza, A. N.; Doering, C. R., Maximal transport in the Lorenz equations, Phys. Lett. A, 379, 518-523, (2015) · Zbl 1342.80005 · doi:10.1016/j.physleta.2014.10.050
[35] Souza, A. N.; Doering, C. R., Transport bounds for a truncated model of Rayleigh-Bénard convection, Physica D, 308, 26-33, (2015) · Zbl 1364.76056 · doi:10.1016/j.physd.2015.05.009
[36] Suga, K.; Mori, M.; Kaneda, M., Vortex structure of turbulence over permeable walls, Intl J. Heat Fluid Flow, 32, 586-595, (2011) · doi:10.1016/j.ijheatfluidflow.2011.02.016
[37] Tobasco, I.; Doering, C. R., Optimal wall-to-wall transport by incompressible flows, Phys. Rev. Lett., 118, (2017) · doi:10.1103/PhysRevLett.118.264502
[38] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[39] Viswanath, D., Recurrent motions within plane Couette turbulence, J. Fluid Mech., 580, 339-358, (2007) · Zbl 1175.76074 · doi:10.1017/S0022112007005459
[40] Viswanath, D., The critical layer in pipe flow at high Reynolds number, Phil. Trans. R. Soc. Lond. A, 367, 561-576, (2009) · Zbl 1221.76098 · doi:10.1098/rsta.2008.0225
[41] Whitehead, J. P.; Doering, C. R., Rigid bounds on heat transport by a fluid between slippery boundaries, J. Fluid Mech., 707, 241-259, (2012) · Zbl 1275.76192 · doi:10.1017/jfm.2012.274
[42] Yamamoto, A.; Hasegawa, Y.; Kasagi, N., Optimal control of dissimilar heat and momentum transfer in a fully developed turbulent channel flow, J. Fluid Mech., 733, 189-220, (2013) · Zbl 1294.76186 · doi:10.1017/jfm.2013.436
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.