×

An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre. (English) Zbl 1419.74175


MSC:

74L15 Biomechanical solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS Reference Manuals (2004), Hibbit, Larlsson and Sorensen Inc.: Hibbit, Larlsson and Sorensen Inc. Pawtucket, RI
[2] Anand, L.; Gurtin, M. E., A theory of amorphous solids undergoing large deformation, Int. J. Plasticity, 9, 1465-1487 (2003) · Zbl 1045.74016
[3] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretches, with application to polymeric glasses, Int. J. Solids Struct., 40, 389-412 (1993) · Zbl 1355.74020
[4] Arruda, E. M.; Boyce, M. C., Evolution of plastic anisotropy in amorphous polymers during finite straining, Int. J. Plasticity, 9, 697-720 (1993)
[5] Bao, G.; Suresh, S., Cell and molecular mechanics of biological materials, Nat. Mater., 2, 715-725 (2003)
[6] Barthelat, F.; Li, C. M.; Comi, C.; Espinosa, H. D., Mechanical properties of nacre constituents and their impact on mechanical performance, J. Mater. Res., 21, 8, 1977-1986 (2006)
[7] Barthelat, F.; Tang, H.; Zavattieri, P. D.; Li, C.-M.; Espinosa, H. D., On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure, J. Mech. Phys. Solids, 55, 2, 306-337 (2007)
[8] Bischoff, J. E.; Arruda, E. M.; Grosh, K., Orthotropic hyperelasticity in terms of an arbitrary molecular chain model, J. Appl. Mech., 69, 199-201 (2002) · Zbl 1110.74345
[9] Camacho, G. T.; Ortiz, M., Computational modeling of impact damage in brittle materials, Int. J. Solids Struct., 33, 2899-2938 (1996) · Zbl 0929.74101
[10] Currey, J. D., Mechanical properties of mother of pearl in tension, Proc. R. Soc. London, 196, 443-463 (1977)
[11] Espinosa, H. D.; Zavattieri, P. D., A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation, Mech. Mater., 35, 333-364 (2003)
[12] Evans, A. G.; Suo, Z.; Wang, R. Z.; Aksay, I. A.; He, M. Y.; Hutchinson, J. W., Model for the robust mechanical behavior of nacre, J. Mater. Res., 16, 2475-2484 (2001)
[13] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), Wiley: Wiley New York · Zbl 0980.74001
[14] Jackson, A. P.; Vincent, J. F.V.; Turner, R. M., The mechanical design of nacre, Proc. R. Soc. London, 234, 415-440 (1988)
[15] Ji, B.; Gao, H., Mechanical properties of nanostructure of biological materials, J. Mech. Phys. Solids, 52, 1963-1990 (2004) · Zbl 1115.74348
[16] Katti, D. R.; Katti, K. S.; Sopp, J. M.; Sarikaya, M., 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites, Comput. Theor. Polym. Sci., 11, 397-404 (2001)
[17] Kuhl, E.; Garikipati, K.; Arruda, E. M.; Grosh, K., Remodeling of biological issue: mechanically induced reorientation of a transversely isotropic chain network, J. Mech. Phys. Solids, 53, 1552-1573 (2005) · Zbl 1120.74635
[18] Lubarda, V. A., Elastoplasticity Theory (2002), CRC Press LLC: CRC Press LLC Boca Raton, FLA · Zbl 1014.74001
[19] Marko, J. F.; Siggia, E. D., Stretching DNA, Macomolecules, 28, 8759-8770 (1995)
[20] Menig, R.; Meyers, M. H.; Meyers, M. A.; Vecchio, K. S., Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells, Acta Mater., 48, 2383-2398 (2000)
[21] Oberhauser, A. F.; Marszalek, P. E.; Erickson, H. P.; Fernandez, M., The molecular elasticity of the extracellular matrix protein tenascin, Nature, 393, 181-185 (1998)
[22] Qi, H. J.; Bruet, B. F.J.; Palmer, J. S.; Ortiz, C.; Boyce, M. C., Micromechanics and macromechanics of the tensile deformation of nacre, (Hozapfel, G. A.; Ogden, R. W., Mechanics of Biological Tissues, Proceedings of International Union of Theoretical and Applied Mechanics (IUTAM) (2005), Springer: Springer Graz, Austria), 175
[23] Parks, D.M., Argon, A.S., Bagepalli, B., 1984. Large elastic-plastic deformation of glassy polymers. Technical Report, MIT, Program in Polymer Science and Technology.; Parks, D.M., Argon, A.S., Bagepalli, B., 1984. Large elastic-plastic deformation of glassy polymers. Technical Report, MIT, Program in Polymer Science and Technology.
[24] Sarikaya, M., Aksay, J.A., 1992. In: Case, S. (Ed.), Results and Problems in Cell Differentiation in Biopolymers. Springer, Amsterdam, p. 1.; Sarikaya, M., Aksay, J.A., 1992. In: Case, S. (Ed.), Results and Problems in Cell Differentiation in Biopolymers. Springer, Amsterdam, p. 1.
[25] Sarikaya, M.; Gunnison, K. E.; Yasrebi, M.; Aksay, I. A., Mechanical property-microstructural relationships in Abalone Shell, (Rieke, P. C.; Calvert, P. D.; Alper, M., Materials Synthesis Utilizing Biological Processes, MRS Symp. Proc., Vol. 174 (1990), Material Research Society: Material Research Society Pittsburgh, Pennsylvania), 109-116
[26] Smith, B. L.; Schaffer, T. E.; Viani, M.; Thompson, J. B.; Frederick, N. A.; Kindt, J.; Belcher, A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature, 399, 761-763 (1999)
[27] Tvergaard, V.; Hutchinson, J. W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. Mech. Phys. Solids, 40, 1377-1397 (1992) · Zbl 0775.73218
[28] Wang, R. Z.; Suo; Evans, A. G.; Yao, N.; Aksay, I. A., Deformation mechanisms in nacre, J. Mater. Res., 16, 2485-2493 (2001)
[29] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Eng., 79, 173-202 (1990) · Zbl 0731.73031
[30] Wu, P. D.; van der Giessen, E., On improved network models for rubber elasticity and their application to orientation hardening in glassy polymer, J. Mech. Phys. Solids, 41, 427-456 (1993) · Zbl 0825.73103
[31] Xu, X.-P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 1397-1434 (1994) · Zbl 0825.73579
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.