×

Nonlinear dynamics of a nutrient-phytoplankton model with time delay. (English) Zbl 1418.92223

Summary: We consider a nutrient-phytoplankton model with a Holling type II functional response and a time delay. By selecting the time delay used as a bifurcation parameter, we prove that the system is stable if the delay value is lower than the critical value but unstable when it is above this value. First, we investigate the existence and stability of the equilibria, as well as the existence of Hopf bifurcations. Second, we consider the direction, stability, and period of the periodic solutions from the steady state based on the normal form and the center manifold theory, thereby deriving explicit formulas. Finally, some numerical simulations are given to illustrate the main theoretical results.

MSC:

92D40 Ecology

Software:

PRED_PREY

References:

[1] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 5, 1530-1535 (1992) · doi:10.2307/1940005
[2] Shi, H.-B.; Li, W.-T.; Lin, G., Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response, Nonlinear Analysis. Real World Applications, 11, 5, 3711-3721 (2010) · Zbl 1202.35116 · doi:10.1016/j.nonrwa.2010.02.001
[3] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, Journal of Theoretical Biology, 245, 2, 220-229 (2007) · Zbl 1451.92248 · doi:10.1016/j.jtbi.2006.09.036
[4] Sun, G.-Q.; Jin, Z.; Liu, Q.-X.; Li, L., Dynamical complexity of a spatial predator-prey model with migration, Ecological Modelling, 219, 1-2, 248-255 (2008) · doi:10.1016/j.ecolmodel.2008.08.009
[5] Abbas, S.; Banerjee, M.; Hungerbühler, N., Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, Journal of Mathematical Analysis and Applications, 367, 1, 249-259 (2010) · Zbl 1185.92087 · doi:10.1016/j.jmaa.2010.01.024
[6] Wang, Y. P.; Zhao, M.; Dai, C. J.; Pan, X. H., Nonlinear dynamics of a nutrient-plankton model, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.37116 · doi:10.1155/2014/451757
[7] Sandulescu, M.; López, C.; Hernández-García, E.; Feudel, U., Plankton blooms in vortices: the role of biological and hydrodynamic timescales, Nonlinear Processes in Geophysics, 14, 4, 443-454 (2007) · doi:10.5194/npg-14-443-2007
[8] Dai, C. J.; Zhao, M.; Chen, L. S., Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances, Mathematics and Computers in Simulation, 84, 83-97 (2012) · Zbl 1257.92040 · doi:10.1016/j.matcom.2012.09.004
[9] Wang, W.; Liu, Q.-X.; Jin, Z., Spatiotemporal complexity of a ratio-dependent predator-prey system, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 75, 5 (2007) · doi:10.1103/physreve.75.051913
[10] Garvie, M. R., Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bulletin of Mathematical Biology, 69, 3, 931-956 (2007) · Zbl 1298.92081 · doi:10.1007/s11538-006-9062-3
[11] Zhang, W. W.; Zhao, M., Dynamical complexity of a spatial phytoplankton-zooplankton model with an alternative prey and refuge effect, Journal of Applied Mathematics, 2013 (2013) · Zbl 1266.92070 · doi:10.1155/2013/608073
[12] Huppert, A.; Blasius, B.; Olinky, R.; Stone, L., A model for seasonal phytoplankton blooms, Journal of Theoretical Biology, 236, 3, 276-290 (2005) · Zbl 1442.92100 · doi:10.1016/j.jtbi.2005.03.012
[13] Mäler, K.-G., Development, ecological resources and their management: a study of complex dynamic systems, European Economic Review, 44, 4-6, 645-665 (2000) · doi:10.1016/s0014-2921(00)00043-x
[14] Zhao, M.; Wang, X.; Yu, H.; Zhu, J., Dynamics of an ecological model with impulsive control strategy and distributed time delay, Mathematics and Computers in Simulation, 82, 8, 1432-1444 (2012) · Zbl 1251.92049 · doi:10.1016/j.matcom.2011.08.009
[15] Lian, F.; Xu, Y., Hopf bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay, Applied Mathematics and Computation, 215, 4, 1484-1495 (2009) · Zbl 1187.34116 · doi:10.1016/j.amc.2009.07.003
[16] Su, Y.; Wei, J.; Shi, J., Hopf bifurcations in a reaction-diffusion population model with delay effect, Journal of Differential Equations, 247, 4, 1156-1184 (2009) · Zbl 1203.35029 · doi:10.1016/j.jde.2009.04.017
[17] Yu, H.; Zhao, M.; Agarwal, R. P., Stability and dynamics analysis of time delayed eutrophication ecological model based upon the Zeya reservoir, Mathematics and Computers in Simulation, 97, 53-67 (2014) · Zbl 1461.92132 · doi:10.1016/j.matcom.2013.06.008
[18] Chen, Y.; Zhang, F., Dynamics of a delayed predator-prey model with predator migration, Applied Mathematical Modelling, 37, 3, 1400-1412 (2013) · Zbl 1351.34082 · doi:10.1016/j.apm.2012.04.012
[19] Chen, S. S.; Shi, J. P.; Wei, J. J., Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems, Journal of Nonlinear Science, 23, 1, 1-38 (2013) · Zbl 1271.34071 · doi:10.1007/s00332-012-9138-1
[20] Wang, M.; Lv, G., Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 23, 7, 1609-1630 (2010) · Zbl 1200.35173 · doi:10.1088/0951-7715/23/7/005
[21] Pan, X. H.; Zhao, M.; Dai, C. J.; Wang, Y. P., Stability and Hopf bifurcation analysis of a nutrient-phytoplankton model with delay effect, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.37114 · doi:10.1155/2014/471507
[22] Zhang, J. Z.; Jin, Z.; Yan, J. R.; Sun, G. Q., Stability and Hopf bifurcation in a delayed competition system, Nonlinear Analysis. Theory, Methods & Application, 70, 2, 658-670 (2009) · Zbl 1166.34049 · doi:10.1016/j.na.2008.01.002
[23] Chen, S.; Shi, J.; Wei, J., The effect of delay on a diffusive predator-prey system with Holling type-II predator functional response, Communications on Pure and Applied Analysis, 12, 1, 481-501 (2013) · Zbl 1264.35120 · doi:10.3934/cpaa.2013.12.481
[24] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y., Theory and Applications of Hopf Bifurcation (1981), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.