×

Non-parametric inference of transition probabilities based on Aalen-Johansen integral estimators for acyclic multi-state models: application to LTC insurance. (English) Zbl 1416.91181

Summary: Studying long term care (LTC) insurance requires modeling the lifetime of individuals in presence of both terminal and non-terminal events which are concurrent. Although a non-homogeneous semi-Markov multi-state model is probably the best candidate for this purpose, most of the current researches assume, maybe abusively, that the Markov assumption is satisfied when fitting the model. In this context, using the Aalen-Johansen estimators for transition probabilities can induce bias, which can be important when the Markov assumption is strongly unstated. Based on some recent studies developing non-Markov estimators in the illness-death model that we can easily extend to a more general acyclic multi-state model, we exhibit three non-parametric estimators of transition probabilities of paying cash-flows, which are of interest when pricing or reserving LTC guarantees in discrete time. As our method directly estimates these quantities instead of transition intensities, it is possible to derive asymptotic results for these probabilities under non-dependent random right-censorship, obtained by re-setting the system with two competing risk blocks. Inclusion of left-truncation is also considered. We conduct simulations to compare the performance of our transition probabilities estimators without the Markov assumption. Finally, we propose a numerical application with LTC insurance data, which is traditionally analyzed with a semi-Markov model.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
62G05 Nonparametric estimation

References:

[1] Aalen, O. O.; Johansen, S., An empirical transition matrix for non-homogeneous Markov chains based on censored observations, Scand. J. Stat., 5, 3, 141-150, (1978) · Zbl 0383.62058
[2] Allignol, A.; Beyersmann, J.; Gerds, T.; Latouche, A., A competing risks approach for nonparametric estimation of transition probabilities in a non-Markov illness-death model, Lifetime Data Anal., 1-19, (2014) · Zbl 1359.62471
[3] Andersen, P. K.; Borgan, Ø.; Gill, R. D.; Keiding, N., Statistical models based on counting processes, (Springer Series in Statistics, (1993), Springer-Verlag New York Inc.) · Zbl 0769.62061
[4] Andersen, P. K.; Keiding, N., Multi-state models for event history analysis, Stat. Methods Med. Res., 11, 2, 91-115, (2002) · Zbl 1121.62568
[5] Andersen, P. K.; Klein, J. P.; Rosthøj, S., Generalised linear models for correlated pseudo-observations with applications to multi-state models, Biometrika, 90, 1, 15-27, (2003), 00128 · Zbl 1034.62062
[6] Azarang, L.; de Uña-Álvarez, J.; Stute, W., The jackknife estimate of covariance of two kaplan-meier integrals with covariables, Statistics, 49, 5, 1005-1025, (2015) · Zbl 1337.62099
[7] Beyersmann, J.; Schumacher, M.; Allignol, A., Competing risks and multistate models with R, (Use R !, (2011), Springer) · Zbl 1304.62002
[8] Beyersmann, J.; Termini, S. D.; Pauly, M., Weak convergence of the wild bootstrap for the aalen-johansen estimator of the cumulative incidence function of a competing risk, Scand. J. Stat., 40, 3, 387-402, (2013) · Zbl 1364.62103
[9] Biessy, G., Long-term care insurance: a multi-state semi-Markov model to describe the dependency process for elderly people, Bull. Fr. Actuar., 15, 29, 41-74, (2015)
[10] Buchardt, K.; Møller, T.; Schmidt, K. B., Cash flows and policyholder behaviour in the semi-Markov life insurance setup, Scand. Actuar. J., 1-29, (2014)
[11] Cheng, Y.; Fine, J. P.; Kosorok, M. R., Nonparametric association analysis of bivariate competing-risks data, J. Amer. Statist. Assoc., 102, 480, 1407-1415, (2007) · Zbl 1333.62241
[12] Christiansen, M. C., Multistate models in health insurance, Adv. Stat. Anal., 96, 2, 155-186, (2012) · Zbl 1443.62341
[13] Courbage, C.; Roudaut, N., Long-term care insurance: the French example, Eur. Geriatr. Med., 2, 1, 22-25, (2011)
[14] Currie, I. D.; Durban, M.; Eilers, P. H., Smoothing and forecasting mortality rates, Statistical Modelling, 4, 4, 279-298, (2004), 00308 · Zbl 1061.62171
[15] Czado, C.; Rudolph, F., Application of survival analysis methods to long-term care insurance, Insurance Math. Econom., 31, 3, 395-413, (2002) · Zbl 1074.62526
[16] Deléglise, M. P.; Hess, C.; Nouet, S., Tarification, provisionnement et pilotage d’un portefeuille Dépendance, Bull. Fr. Actuar., 9, 17, 70-108, (2009)
[17] Denuit, M.; Robert, C., Actuariat des assurances de personnes — modélisation, tarification et provisionnement, (Assurance Audit Actuariat, (2007), Economica Paris)
[18] De Uña-Álvarez, J.; Meira-Machado, L., Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study, Biometrics, (2015) · Zbl 1390.62246
[19] De Wreede, L. C.; Fiocco, M.; Putter, H., Mstate: an R package for the analysis of competing risks and multi-state models, J. Stat. Softw., 38, 7, (2011)
[20] Efron, B., Bootstrap methods: another look at the jackknife, Ann. Stat., 7, 1, 1-26, (1979) · Zbl 0406.62024
[21] Efron, B., Censored data and the bootstrap, J. Amer. Statist. Assoc., 76, 374, 312-319, (1981) · Zbl 0461.62039
[22] Fong, J. H.; Shao, A. W.; Sherris, M., Multistate actuarial models of functional disability, N. Am. Actuar. J., 19, 1, 41-59, (2015) · Zbl 1414.91185
[23] Fuino, M.; Wagner, J., Long-term care models and dependence probability tables by acuity level: new empirical evidence from Switzerland, Insur. Math. Econom., 81, 51-70, (2018) · Zbl 1416.91178
[24] Gauzère, F.; Commenges, D.; Barberger-Gateau, P.; Letenneur, L.; Dartigues, J.-F., Maladie et dépendance — description des évolutions par des modèles multi-états, Population, 54, 2, 205-222, (1999)
[25] Guibert, Q.; Planchet, F., Construction de lois d’expérience en présence d’évènements concurrents — application à l’estimation des lois d’incidence d’un contrat dépendance, Bull. Fr. Actuar., 13, 27, 5-28, (2014)
[26] Haberman, S.; Pitacco, E., Actuarial models for disability insurance, (1998), Chapman Hall/CRC · Zbl 0935.62118
[27] Helms, F.; Czado, C.; Gschlößl, S., Calculation of LTC premiums based on direct estimates of transition probabilities, Astin Bull., 35, 02, 455-469, (2005) · Zbl 1097.62126
[28] Hoem, J. M., Inhomogeneous semi-Markov processes, select actuarial tables, and duration-dependence in demography, Popul. Dyn., 251-296, (1972)
[29] Hougaard, P., Multi-state models: A review, Lifetime Data Anal., 5, 3, 239-264, (1999) · Zbl 0934.62112
[30] Hougaard, P., Analysis of multivariate survival data, (Statistics for Biology and Health, (2001), Springer-Verlag New York Inc.)
[31] Janssen, J.; Manca, R., Semi-Markov risk models for finance, insurance and reliability, (2007), Springer-Verlag New York Inc. · Zbl 1144.91027
[32] Król, A.; Saint-Pierre, P., Semimarkov: an R package for parametric estimation in multi-state semi-Markov models, J. Stat. Softw., 66, 6, 1-16, (2015)
[33] Lando, D.; Skødeberg, T. M., Analyzing rating transitions and rating drift with continuous observations, J. Bank. Finance, 26, 2-3, 423-444, (2002)
[34] Levantesi, S.; Menzietti, M., Managing longevity and disability risks in life annuities with long term care, Insurance Math. Econom., 50, 3, 391-401, (2012) · Zbl 1237.91131
[35] Meira-Machado, L.; de Uña-Álvarez, J.; Cadarso-Suárez, C., Nonparametric estimation of transition probabilities in a non-Markov illness-death model, Lifetime Data Anal., 12, 3, 325-344, (2006) · Zbl 1356.62127
[36] Meira-Machado, L.; de Uña-Álvarez, J.; Datta, S., Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model, Comput. Stat., 1-21, (2014)
[37] Meira-Machado, L.; Roca-Pardinas, J., P3state.msm: analyzing survival data from an illness-death model, J. Stat. Softw., 38, 3, 1-18, (2011)
[38] Mostajabi, F.; Datta, S., Nonparametric regression of state occupation, entry, exit, and waiting times with multistate right-censored data, Stat. Med., 32, 17, 3006-3019, (2013)
[39] Peng, L.; Fine, J. P., Nonparametric estimation with left-truncated semicompeting risks data, Biometrika, 93, 2, 367-383, (2006) · Zbl 1153.62318
[40] Pepe, M. S., Inference for events with dependent risks in multiple endpoint studies, J. Amer. Statist. Assoc., 86, 415, 770-778, (1991) · Zbl 0735.62106
[41] Plisson, M., Assurabilité et développement de l’assurance dépendance, (2009), Université Paris Dauphine, (Ph.D. thesis)
[42] Pritchard, D. J., Modeling disability in long-term care insurance, N. Am. Actuar. J., 10, 4, 48-75, (2006) · Zbl 1480.91237
[43] R Core Team, R: A language and environment for statistical computing, (2017), R Foundation for Statistical Computing Vienna, Austria
[44] Rotolo, F.; Legrand, C.; Vana Keilegom, I., A simulation procedure based on copulas to generate clustered multi-state survival data, Comput. Methods Programs Biomed., 109, 3, 305-312, (2013)
[45] Salazar, J. C.; Schmitt, F. A.; Yu, L.; Mendiondo, M. M.; Kryscio, R. J., Shared random effects analysis of multi-state Markov models: application to a longitudinal study of transitions to dementia, Stat. Med., 26, 3, 568-580, (2007)
[46] Sánchez-Sellero, C.; Manteiga, W. G.; Vana Keilegom, I., Uniform representation of product-limit integrals with applications, Scand. J. Stat., 32, 4, 563-581, (2005) · Zbl 1092.62027
[47] Suzukawa, A., Asymptotic properties of aalen-johansen integrals for competing risks data, J. Japan Statist. Soc., 32, 77-93, (2002) · Zbl 1044.62107
[48] Titman, A. C., Transition probability estimates for non-Markov multi-state models, Biometrics, (2015) · Zbl 1419.62458
[49] Tomas, J.; Planchet, F., Multidimensional smoothing by adaptive local kernel-weighted log-likelihood: application to long-term care insurance, Insurance Math. Econom., 52, 3, 573-589, (2013) · Zbl 1284.91271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.