×

Spectral collocation methods for nonlinear weakly singular Volterra integro-differential equations. (English) Zbl 1416.65236

Summary: In this paper, a spectral collocation approximation is proposed for neutral and nonlinear weakly singular Volterra integro-differential equations (VIDEs) with non-smooth solutions. We use some suitable variable transformations to change the original equation into a new equation, so that the solution of the resulting equation possesses better regularity, and the the Jacobi orthogonal polynomial theory can be applied conveniently. Under reasonable assumptions on the nonlinearity, we carry out a rigorous error analysis in \({L}^\infty\) norm and weighted \({L}^2\) norm. To perform the numerical simulations, some test examples (linear and nonlinear) are considered with nonsmooth solutions, and numerical results are presented. Further more, the comparative study of the proposed methods with some existing numerical methods is provided.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
Full Text: DOI

References:

[1] H.Brunner, Polynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernels, IMA J. Numer. Anal. vol. 6 (1986) pp. 221-239. · Zbl 0634.65142
[2] H.Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge University Press, New York, 2004. · Zbl 1059.65122
[3] A.Kufner, L.Persson, Weighted inequalities of hardy type, World Scientific, New York, 2003. · Zbl 1065.26018
[4] X.Li, T.Tang, Convergence analysis of Jacobi spectral collocations methods for Alber‐Volterra integral equations of second kind, Front. Math. China vol. 7 (2012) pp. 69-84. · Zbl 1260.65111
[5] T.Tang, X.Xu, J.Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math. vol. 26 (2008) pp. 825-837. · Zbl 1174.65058
[6] H.Cai, J.Qi, A Legendre‐Galerkin method for solving general Volterra functional integral equations, Numer Algorithms vol. 73 (2016) pp. 1,159-1,180. · Zbl 1361.65099
[7] X.Li, T.Tang, C.Xu, Numerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo‐spectral Galerkin methods, J. Sci. Comput. vol. 67 (2016) pp. 43-64. · Zbl 1346.65078
[8] X.Tao, Z.Xie, X.Zhou, Spectral Petrov‐Galerkin methods for the second kind Volterra type integro‐differential equations, Numer. Math. Theor. Methods Appl. vol. 4 (2011) pp. 216-236. · Zbl 1249.65291
[9] Z.Xie, X.Li, T.Tang, Convergence analysis of spectral Galerkin methods for Volterra type integral equations, J. Sci. Comput. vol. 53 (2012) pp. 414-434. · Zbl 1273.65200
[10] X.Zhang, Jacobi spectral method for the second‐kind Volterra integral equations with a weakly singular kernel, App. Math. Model. vol. 39 (2015) pp. 4421-4431. · Zbl 1443.65448
[11] I.Ali, Convergence analysis of spectral methods for integro‐differential equations with vanishing proportional delays, J. Comput. Math. vol. 28 (2010) pp. 962-973.
[12] Y.Jiang, On spectral methods for Volterra‐type integro‐differential equations, J. Comput. Appl. Math. vol. 230 (2009) pp. 333-340. · Zbl 1202.65170
[13] Y.Wei, Y.Chen, Convergence analysis of the Legendre spectral collocations methods for second order Volterra integro‐differential equations, Numer. Math. Theor. Methods Appl. vol. 4 (2011) pp. 419-438. · Zbl 1265.65278
[14] Y.Wei, Y.Chen, Legendre spectral collocation methods for pantograph Volterra delay integro‐differential equations, J. Sci. Comput. vol. 53 (2012) pp. 672-688. · Zbl 1264.65218
[15] Y.Wei, Y.Chen, Legendre spectral collocation method for neutral and high‐order Volterra integro‐differential equation, Appl. Numer. Math. vol. 81 (2014) pp. 15-29. · Zbl 1291.65390
[16] Y.Chen, X.Li, T.Tang, A note on Jacobi spectral‐collocation methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Math. vol. 31 (2013) pp. 47-56. · Zbl 1289.65284
[17] Y.Chen, T.Tang, Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math. vol. 233 (2009) pp. 938-950. · Zbl 1186.65161
[18] Y.Chen, T.Tang, Convergence analysis of Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comput. vol. 79 (2010) pp. 147-167. · Zbl 1207.65157
[19] C.Huang, M.Stynes, A spectral collocation method for a weakly singular Volterra integral equation of the second kind, Adv. Comput. Math. vol. 42 (2016) pp. 1015-1030. https://doi.org/10.1007/s10444‐016‐9451‐6 · Zbl 1361.65102 · doi:10.1007/s10444‐016‐9451‐6
[20] X.Shi, Y.Chen, Spectral‐collocation method for Volterra delay integro‐differential equations with weakly singular kernels, Adv. Appl. Math. Mech. vol. 8 (2016) pp. 648-669. · Zbl 1488.65758
[21] Y.Wei, Y.Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro‐differential equations with smooth solutions, Adv. Appl. Math. Mech. vol. 4 (2012) pp. 1-20. · Zbl 1262.45005
[22] R.Zhang, B.Zhu, H.Xie, Spectral methods for weakly singular Volterra integral equations with pantograph delays, Front. Math. China vol. 8 (2013) pp. 281-299. · Zbl 1273.65201
[23] Z.Wan, Y.Chen, Y.Huang, Legendre spectral Galerkin method for second‐kind Volterra integral equations, Front. Math. China vol. 4 (2009) pp. 181-193. · Zbl 1396.65165
[24] S.Sohrabi, H.Ranjbar, M.Saei, Convergence analysis of the Jacobi‐collocation method for nonlinear weakly singular Volterra integral equations, Appl. Math Comput. vol. 299 (2017) pp. 141-152. · Zbl 1411.65172
[25] Y.Yang et al., Convergence analysis of Legendre‐collocation methods for nonlinear Volterra type Integro equations, Adv. Appl. Math. Mech. vol. 7 (2015) pp. 74-88. · Zbl 1488.65764
[26] Y.Yang, Y.Chen, Spectral collocation methods for nonlinear volterra integro‐differential equations with weakly singular kernels, Bull. Malays. Math. Sci. Soc. vol. 3 (2017) pp. 1-17.
[27] L.Tao, H.Yong, Extrapolation method for solving weakly singular nonlinear Volterra integral equations of second kind, J. Math. Anal. Appl. vol. 324 (2006) pp. 225-237. · Zbl 1115.65129
[28] C.Canuto et al., Spectral methods fundamentals in single domains, Springer, Heidelberg, Germany, 2006. · Zbl 1093.76002
[29] G.Mastroianni, D.Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded intervals, A survey, J. Comput. Appl. Math. vol. 134 (2001) pp. 325-341. · Zbl 0990.41003
[30] D.Willett, A linear generalization of Gronwall’s inequality, Proc. Am. Math. Soc. vol. 16 (1965) pp. 774-778. · Zbl 0128.27604
[31] D.Ragozin, Polynomial approximation on compact manifolds and homogeneous space, Trans. Am. Math. Soc. vol. 150 (1970) pp. 41-53. · Zbl 0208.14701
[32] D.Ragozin, Constructive polynomial approximation on spheres and projective spaces, Trans. Am. Math. Soc. vol. 162 (1971) pp. 157-170. · Zbl 0234.41011
[33] D.Colton, R.Kress, Inverse Coustic and electromagnetic scattering theory, applied mathematical sciences. 2nd ed., Springer, Heidelberg, Germany, 1998. · Zbl 0893.35138
[34] P.Neval, Mean convergence of Lagrange interpolation, III, Trans. Am. Math. Soc. vol. 282 (1984)pp. 669-698. · Zbl 0577.41001
[35] P.Baratella, A.Palamara Orsi, Torino, Numerical solution of weakly singular linear volterra integro‐differential equations, Comput. Secur. vol. 77 (2006) pp. 77-96. · Zbl 1088.65114
[36] C.Canuto et al., Spectral methods in fluid dynamics, Springer‐Verlag, Berlin, Germany, 1988. · Zbl 0675.65117
[37] C.Canuto et al., Spectral methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer, Heidelberg, Germany, 2007. · Zbl 1121.76001
[38] J.Shen, T.Tang, Pectral and high‐order methods with applications, Science Press, Beijing, China, 2006. · Zbl 1234.65005
[39] J.Shen, T.Tang, L.Wang, Spectral methods: Algorithms, Analyses and Applications, Springer, New York, 2011. · Zbl 1227.65117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.