×

Geometric anisotropic spatial point pattern analysis and Cox processes. (English) Zbl 1416.62547

Summary: We consider spatial point processes with a pair correlation function, which depends only on the lag vector between a pair of points. Our interest is in statistical models with a special kind of ‘structured’ anisotropy: the pair correlation function is geometric anisotropic if it is elliptical but not spherical. In particular, we study Cox process models with an elliptical pair correlation function, including shot noise Cox processes and log Gaussian Cox processes, and we develop estimation procedures using summary statistics and Bayesian methods. Our methodology is illustrated on real and synthetic datasets of spatial point patterns.

MSC:

62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

References:

[1] Abramowitz, M. & StegunI. (1964). Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover, New York. · Zbl 0171.38503
[2] Baddeley, A., Møller, J. & Waagepetersen, R.(2000). ‘Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns’. Statistica Neerlandica54, 329-350. · Zbl 1018.62027
[3] Bartlett, M. S. (1964). ‘The spectral analysis of two‐dimensional point processes’. Biometrika51, 299-311. · Zbl 0124.08601
[4] Castelloe, J. M. (1998). Issues in reversible jump Markov chain Monte Carlo and composite EM analysis, applied to spatial Poisson cluster processes, Ph.D. thesis, University of Iowa.
[5] Cox, D. R. (1955). ‘Some statistical models related with series of events’. J. R. Stat. Soc. Ser. B Stat. Methodol. 17, 129-164. · Zbl 0067.37403
[6] Cox, D. R. & Isham, V. (1980). Point Processes, Chapman & Hall, London. · Zbl 0441.60053
[7] Daley, D. J. & Vere‐Jones, D. (2003). An introduction to the theory of point processes. Volume I: elementary theory and methods, (second edn)., Springer‐Verlag, New York. · Zbl 1026.60061
[8] Diggle, P. J. (2003). Statistical analysis of spatial point patterns, (second edn)., Arnold, London. · Zbl 1021.62076
[9] Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2009). Bayesian data analysis, Chapman & Hall/CRC, Boca Raton.
[10] Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice, Chapman & Hall, London. · Zbl 0832.00018
[11] Grabarnik, P., Myllymaki, M. & Stoyan, D. (2011). ‘Correct testing of mark independence for marked point patterns’. Ecol. Modell. 222, 711-732.
[12] Guan, Y., Sherman, M. & Calvin, J. A. (2006). ‘Assessing isotropy for spatial point processes’. Biometrics62, 119-125. · Zbl 1091.62096
[13] GuttorpP. & Gneiting, T. (2006). ‘On the Matérn correlation family’. Biometrika93, 989-995. · Zbl 1436.62013
[14] Guttorp, P. & Gneiting, T. (2010). Continuous parameter stochastic process theory. In ‘A Handbook of Spatial Sstatistics’ (eds Gelfand, A. E. (ed.), Diggle, P. (ed.), Fuentes, M. (ed.) & Guttorp, P. (ed.)), Chapmand and Hall/CRC Press, Boca Raton, Florida; 17-28. · Zbl 1188.62284
[15] Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns, John Wiley and Sons, Chichester. · Zbl 1197.62135
[16] Møller, J. (2003). ‘Shot noise Cox processes’. Adv. in Appl. Probab.35, 4-26. · Zbl 1021.62077
[17] Møller, J., Syversveen, A. R. & Waagepetersen, R. P. (1998). ‘Log Gaussian Cox processes’. Scand. J. Stat.25, 451-482. · Zbl 0931.60038
[18] Møller, J. & Waagepetersen, R. P. (2004). Statistical inference and simulation for spatial point processes, Chapman and Hall/CRC, Boca Raton. · Zbl 1044.62101
[19] Møller, J. & Waagepetersen, R. P. (2007). ‘Modern spatial point process modelling and inference (with discussion)’. Scand. J. Stat.34, 643-711. · Zbl 1157.62067
[20] Mugglestone, M. A. & Renshaw, E. (1996). ‘A practical guide to the spectral analysis of spatial point processes’. Comput. Statist. Data Anal.21, 43-65. · Zbl 0900.62493
[21] Ohser, J. & Stoyan, D. (1981). ‘On the second‐order and orientation analysis of planar stationary point processes’. Biometrical J.23, 523-533. · Zbl 0494.60048
[22] Prokešová, M. P. & Jensen, E. B. V. (2013). ‘Asymptotic Palm likelihood theory for stationary point processes’. Ann. Inst. Statist. Math.65, 387-412. · Zbl 1440.62343
[23] Ripley, B. D. (1976). ‘The second‐order analysis of stationary point processes’. J. Appl. Probab.13, 255-266. · Zbl 0364.60087
[24] Rosenberg, M. S. (2004). ‘Wavelet analysis for detecting anisotropy in point patterns’. J. Veg. Sci.15, 277-284.
[25] Rue, H., Martino, S. & Chopin, N. (2009). ‘Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)’. J. R. Stat. Soc. Ser. B Stat. Methodol.71, 319-392. · Zbl 1248.62156
[26] Simpson, D., Illian, J., Lindgren, F., Sørbye, S. H. & Rue, H. (2011). Going off grid: computationally efficient inference for log‐Gaussian Cox processes. Preprint Statistics No. 10/2011, Norwegian University of Science and Technology.
[27] Stoyan, D., Kendall, W. S. & Mecke, J. (1995). Stochastic geometry and its applications, (second edn)., Wiley, Chichester. · Zbl 0838.60002
[28] Stoyan, D. & Stoyan, H. (1994). Fractals, random shapes and point fields, Wiley, Chichester. · Zbl 0828.62085
[29] Tanaka, U., Ogata, Y. & Stoyan, D. (2008). ‘Parameter estimation and model selection for Neyman-Scott point processes’. Biometrical J.50, 43-57. · Zbl 1442.62645
[30] Thomas, M. (1949). ‘A generalization of Poisson’s binomial limit for use in ecology’. Biometrika36, 18-25.
[31] Veen, A. & Schoenberg, F. P. (2006). ‘Assessing spatial point process models using weighted K‐functions: analysis of california earthquakes’. Case Studies in Spatial Point Process Modeling, 293-306. · Zbl 05243467
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.