×

Existence of positive solutions of nonlocal \(p(x)\)-Kirchhoff evolutionary systems via sub-super solutions concept. (English) Zbl 1416.35133

Summary: Motivated by the idea which has been introduced by S. Boulaaras et al. and, by G. A. Afrouzi and S. Shakeri combined with some properties of Kirchhoff type operators, we prove the existence of positive solutions for a class of nonlocal \(p \left(x\right)\)-Kirchhoff evolutionary systems by using the sub and super solutions concept.

MSC:

35K10 Second-order parabolic equations
35B09 Positive solutions to PDEs

References:

[1] Ruzicka, M.; ; Electrorheological Fluids: Modeling and Mathematical Theory: Berlin, Germany 2002; . · Zbl 0962.76001
[2] Zhikov, V.V.; Averaging of functionals of the calculus of variations and elasticity theory; Math. USSR-Izv.: 1987; Volume 29 ,33-36. · Zbl 0599.49031
[3] Fan, X.L.; Global C1,α regularity for variable exponent elliptic equations in divergence form; J. Differ. Equ.: 2007; Volume 235 ,397-417. · Zbl 1143.35040
[4] Fan, X.L.; Zhao, D.; Regularity of minimizers of variational integrals with continuous p(x)-growth conditions; Chin. Ann. Math.: 1996; Volume 17 ,557-564. · Zbl 0933.49024
[5] Zhang, Q.H.; Existence of positive solutions for a class of p(x)-Laplacian systems; J. Math. Anal. Appl.: 2007; Volume 333 ,591-603. · Zbl 1154.35032
[6] Zhang, Q.H.; Existence of positive solutions for elliptic systems with nonstandard p(x)-growth conditions via sub-supersolution method; Nonlinear Anal.: 2007; Volume 67 ,1055-1067. · Zbl 1166.35326
[7] Chen, M.; On positive weak solutions for a class of quasilinear elliptic systems; Nonlinear Anal.: 2005; Volume 62 ,751-756. · Zbl 1130.35044
[8] Chung, N.T.; Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities; Complex Var. Elliptic Equ.: 2013; Volume 58 ,1637-1646. · Zbl 1281.35034
[9] Fan, X.L.; Zhao, D.; On the spaces Lp(x) (Ω) and Wm,p(x) (Ω); J. Math. Anal. Appl.: 2001; Volume 263 ,424-446. · Zbl 1028.46041
[10] Fan, X.L.; Zhao, D.; A class of De Giorgi type and Holder continuity; Nonlinear Anal.: 1999; Volume 36 ,295-318. · Zbl 0927.46022
[11] Fan, X.L.; Zhao, D.; The quasi-minimizer of integral functionals with m(x) growth conditions; Nonlinear Anal.: 2000; Volume 39 ,807-816. · Zbl 0943.49029
[12] Fan, X.L.; On the sub-supersolution method for p(x)-Laplacian equations; J. Math. Anal. Appl.: 2007; Volume 330 ,665-682. · Zbl 1206.35103
[13] Kirchhoff, G.; ; Mechanik: Leipzig, Germany 1883; .
[14] Afrouzi, G.A.; Chung, N.T.; Shakeri, S.; Existence of positive solutions for Kirchhoff type equations; Electron. J. Diff. Equ.: 2013; Volume 180 ,1-8. · Zbl 1306.35030
[15] Boulaaras, S.; Ghfaifia, R.; Kabli, S.; An asymptotic behavior of positive solutions for a new class of elliptic systems involving of (p(x),q(x))-Laplacian systems; Bol. Soc. Mat. Mex.: 2017; .
[16] Chipot, M.; Lovat, B.; Some remarks on nonlocal elliptic and parabolic problems; Nonlinear Anal.: 1997; Volume 30 ,4619-4627. · Zbl 0894.35119
[17] Chung, N.T.; Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities; Electron. J. Qual. Theory Differ. Equ.: 2012; Volume 2012 ,1-13. · Zbl 1340.35039
[18] Ghfaifia, R.; Boulaaras, S.; Existence of positive solution for a class of (p(x),q(x))-Laplacian systems; Rend. Circ. Mat. Palermo II Ser.: 2017; .
[19] Mesloub, F.; Boulaaras, S.; General decay for a viscoelastic problem with not necessarily decreasing kernel; J. Appl. Math. Comput.: 2017; . · Zbl 1403.35050
[20] Boumaza, N.; Boulaaras, S.; General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel; Math. Meth. Appl. Sci.: 2018; ,1-20. · Zbl 1415.35038
[21] Sun, J.J.; Tang, C.L.; Existence and multiplicity of solutions for Kirchhoff type equations; Nonlinear Anal.: 2011; Volume 74 ,1212-1222. · Zbl 1209.35033
[22] Han, X.; Dai, G.; On the sub-supersolution method for p(x)-Kirchhoff type equations; J. Inequal. Appl.: 2012; Volume 2012 ,283. · Zbl 1284.35175
[23] Dai, G.; Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian; Appl. Anal.: 2013; Volume 92 ,191-210. · Zbl 1302.35169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.