×

Multiple access multicarrier continuous-variable quantum key distribution. (English) Zbl 1415.81017

Summary: One of the most important practical realizations of the fundamentals of quantum mechanics is continuous-variable quantum key distribution (CVQKD). Here we propose the adaptive multicarrier quadrature division-multiuser quadrature allocation (AMQD-MQA) multiple access technique for continuous-variable quantum key distribution. The MQA scheme is based on the AMQD modulation, which granulates the inputs of the users into Gaussian subcarrier continuous-variables (CVs). In an AMQD-MQA multiple access scenario, the simultaneous reliable transmission of the users is handled by the dynamic allocation of the Gaussian subcarrier CVs. We propose two different settings of AMQD-MQA for multiple input-multiple output communication. We introduce a rate-selection strategy that tunes the modulation variances and allocates adaptively the quadratures of the users over the sub-channels. We also prove the rate formulas if only partial channel side information is available for the users of the sub-channel conditions. We show a technique for the compensation of a nonideal Gaussian input modulation, which allows the users to overwhelm the modulation imperfections to reach optimal capacity-achieving communication over the Gaussian sub-channels. We investigate the diversity amplification of the sub-channel transmittance coefficients and reveal that a strong diversity can be exploited by opportunistic Gaussian modulation.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)

References:

[1] Grosshans F, Grangier P. Reverse reconciliation protocols for quantum cryptography with continuous variables. 2002. ArXiv:quant-ph/0204127v1.; Grosshans F, Grangier P. Reverse reconciliation protocols for quantum cryptography with continuous variables. 2002. ArXiv:quant-ph/0204127v1.
[2] Pirandola S, Mancini S, Lloyd S, Braunstein SL. Continuous-variable quantum cryptography using two-way quantum communication. 2008a. ArXiv:quant-ph/0611167v3.; Pirandola S, Mancini S, Lloyd S, Braunstein SL. Continuous-variable quantum cryptography using two-way quantum communication. 2008a. ArXiv:quant-ph/0611167v3.
[3] Gyongyosi, L.; Imre, S.; Nguyen, H. V., A survey on quantum channel capacities, IEEE Commun Surv Tutorials, 99, 1 (2018)
[4] Gyongyosi, L.; Imre, S., Adaptive multicarrier quadrature division modulation for long-distance continuous-variable quantum key distribution, Proc. SPIE 9123, Quantum Information and Computation XII, 912307 (2014)
[5] Pirandola, S.; Serafini, A.; Lloyd, S., Phys Rev A, 79, 052327 (2009)
[6] Pirandola, S.; Braunstein, S. L.; Lloyd, S., Phys Rev Lett, 101, 200504 (2008)
[7] Weedbrook, C.; Pirandola, S.; Lloyd, S.; Ralph, T., Phys Rev Lett, 105, 110501 (2010)
[8] Weedbrook, C.; Pirandola, S.; Garcia-Patron, R.; Cerf, N. J.; Ralph, T.; Shapiro, J.; Lloyd, S., Rev Mod Phys, 84, 621 (2012)
[9] Shieh, W.; Djordjevic, I., OFDM for Optical Communications. (2010), Elsevier
[10] Gyongyosi, L.; Imre, S., Long-distance continuous-variable quantum key distribution with advanced reconciliation of a gaussian modulation, Proceedings of SPIE Photonics West OPTO 2013 (2013) · Zbl 1264.81075
[11] Gyongyosi, L.; Imre, S., Proceedings volume 8997, Advances in Photonics of Quantum Computing, Memory, and Communication VII; 89970C (2014)
[12] Navascues, M.; Grosshans, F.; Acin, A., Optimality of gaussian attacks in continuous-variable quantum cryptography, Phys Rev Lett, 97, 190502 (2006)
[13] Garcia-Patron, R.; Cerf, N. J., Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys Rev Lett, 97, 190503 (2006)
[14] Adcock, M. R.A.; Hoyer, P.; Sanders, B. C., Limitations on continuous-variable quantum algorithms with fourier transforms, New J Phys, 11, 103035 (2009)
[15] Lloyd, S., Capacity of the noisy quantum channel, Phys Rev A, 55, 1613-1622 (1997)
[16] Imre, S.; Gyongyosi, L., Advanced quantum communications - an engineering approach (2013), Wiley-IEEE Press: Wiley-IEEE Press New Jersey, USA · Zbl 1388.81001
[17] Tse, D.; Viswanath, P., Fundamentals of wireless communication (2005), Cambridge University Press · Zbl 1099.94006
[18] Middlet, D., An introduction to statistical communication theory: An IEEE press classic reissue, Hardcover (1960), IEEE
[19] Kay, S., Fundamentals of statistical signal processing, Volumes I-III (2013), Prentice Hall
[20] Chow, P. S., Bandwidth optimized digital transmission techniques for spectrally shaped channels with impulse noise (1993), Stanford University, Ph.d. thesis
[21] Yu, W.; Cioffi, J. M., On constant power water-filling, Proceedings of the IEEE International Conference on Communications (2001)
[22] Lozano, A.; Tulino, A. M.; Verdu, S., Optimum power allocation for parallel gaussian channels with arbitrary input distributions, IEEE Trans Inf Theory, 52, 7 (2006) · Zbl 1309.94104
[23] Gyongyosi, L.; Imre, S., Low-dimensional reconciliation for continuous-variable quantum key distribution, Appl Sci, (2018)
[24] Gyongyosi, L., Diversity extraction for multicarrier continuous-variable quantum key distribution, Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO 2016) (2016)
[25] Gyongyosi, L.; Imre, S., Eigenchannel decomposition for continuous-variable quantum key distribution, Proceedings Volume 9377, Advances in Photonics of Quantum Computing, Memory, and Communication VIII, vol. 937711 (2015)
[26] Lloyd, S., The universe as quantum computer, (Zenil, H., A Computable Universe: Understanding and exploring Nature as computation (2013), World Scientific: World Scientific Singapore) · Zbl 1256.68076
[27] Lloyd, S.; Shapiro, J. H.; Wong, F. N.C.; Kumar, P.; Shahriar, S. M.; Yuen, H. P., Infrastructure for the quantum internet, ACM SIGCOMM Comput Commun Rev, 34, 9-20 (2004)
[28] Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning. 2013. 1307.0411; Lloyd S, Mohseni M, Rebentrost P. Quantum algorithms for supervised and unsupervised machine learning. 2013. 1307.0411
[29] Lloyd, S.; Mohseni, M.; Rebentrost, P., Quantum principal component analysis, Nature Phys, 10, 631 (2014)
[30] Lloyd, S.; Shapiro, J. H.; Wong, F. N.C.; Kumar, P.; Shahriar, S. M.; Yuen, H. P., Infrastructure for the quantum internet, ACM SIGCOMM Comput Commun Rev, 34, 9-20 (2004)
[31] Petz, D., Quantum Information Theory and Quantum Statistics (2008), Springer-Verlag: Springer-Verlag Heidelberg, Hiv: 6 · Zbl 1145.81002
[32] Pirandola S. Capacities of repeater-assisted quantum communications. 2016. 1601.00966; Pirandola S. Capacities of repeater-assisted quantum communications. 2016. 1601.00966
[33] Gyongyosi, L.; Imre, S., Entanglement-gradient routing for quantum networks, Sci Rep, Nature (2017)
[34] Gyongyosi, L.; Imre, S., Entanglement availability differentiation service for the quantum internet, Sci Rep, Nature (2018)
[35] Biamonte, J., Quantum machine learning, Nature, 549, 195-202 (2017)
[36] Laudenbach F, Pacher C, Fung C-HF, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hubel H. Continuous-variable quantum key distribution with gaussian modulation - the theory of practical implementations. 2018. 1703.09278v3; Laudenbach F, Pacher C, Fung C-HF, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hubel H. Continuous-variable quantum key distribution with gaussian modulation - the theory of practical implementations. 2018. 1703.09278v3
[37] Shor, P. W., Scheme for reducing decoherence in quantum computer memory, Phys Rev A, 52, R2493-R2496 (1995)
[38] Kimble, H. J., The quantum internet, Nature, 453, 1023-1030 (2008)
[39] Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L., Fundamental limits of repeaterless quantum communications, Nature Commun, 15043 (2017)
[40] Pirandola, S.; Braunstein, S. L.; Laurenza, R.; Ottaviani, C.; Cope, T. P.W.; Spedalieri, G.; Banchi, L., Theory of channel simulation and bounds for private communication, Quantum Sci Technol, 3, 035009 (2018)
[41] Laurenza, R.; Pirandola, S., General bounds for sender-receiver capacities in multipoint quantum communications, Phys Rev A, 96, 032318 (2017)
[42] Bacsardi, L., On the way to quantum-based satellite communication, IEEE Comm Mag, 51, 08, 50-55 (2013)
[43] Muralidharan, S.; Kim, J.; Lutkenhaus, N.; Lukin, M. D.; L., J., Ultrafast and fault-tolerant quantum communication across long distances, Phys Rev Lett, 112, 250501 (2014)
[44] Kiktenko, E. O.; Pozhar, N. O.; Anufriev, M. N.; Trushechkin, A. S.; Yunusov, R. R.; Kurochkin, Y. V.; Lvovsky, A. I.; Fedorov, A. K., Quantum-secured blockchain, Quantum Sci Technol, 3, 035004 (2018)
[45] Gyongyosi, L.; Imre, S., Decentralized base-graph routing for the quantum internet, Phys Rev A, 10-20 (2018), , American Physical Society
[46] Van Meter, R., Quantum networking (2014), John Wiley and Sons Ltd · Zbl 1303.81006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.