×

On the Hausdorff dimension of pinned distance sets. (English) Zbl 1414.28011

The paper is a contribution to the conjecture of K. J. Falconer [Mathematika 32, 206–212 (1985; Zbl 0605.28005)] which says that for a set \(A\subseteq \mathbb{R}^d\) with \(d\geq 2\) and Hausdorff dimension \(\dim_H A\geq d/2\) one has \(\dim_H\Delta (A)=1\) where \(\Delta(A):=\{|x-y|:x,y\in A\}\). The author proves that for a set \(A\subseteq\mathbb{R}^2\), for which the Hausdorff and packing dimension coincide and is \(>1\), the set \(\Delta_x(A):=\{|x-y|:y\in A\}\) has full Hausdorff dimension for all \(x\) outside of a set of Hausdorff dimension 1.
Reviewer: Hans Weber (Udine)

MSC:

28A78 Hausdorff and packing measures
28D20 Entropy and other invariants

Citations:

Zbl 0605.28005

References:

[1] J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geometric and Functional Analysis 13 (2003), 334-365. · Zbl 1115.11049 · doi:10.1007/s000390300008
[2] C. A. Cabrelli, K. E. Hare and U. M. Molter, Sums of Cantor sets yielding an interval, Journal of the Australian Mathematical Society 73 (2002), 405-418. · Zbl 1019.28002 · doi:10.1017/S1446788700009058
[3] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (2015), Boca Raton, FL · Zbl 1310.28001
[4] K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), 206-212. · Zbl 0605.28005 · doi:10.1112/S0025579300010998
[5] Falconer, K. J., Fractal Geometry (2014), Chichester · Zbl 0587.28004
[6] A. Ferguson, J. M. Fraser and T. Sahlsten, Scaling scenery of (×m,×n) invariant measures, Advances in Mathematics 268 (2015), 564-602. · Zbl 1302.28029 · doi:10.1016/j.aim.2014.09.019
[7] K. Hambrook, A. Iosevich and A. Rice, Group actions and a multi-parameter falconer distance problem, preprint, arXiv:1705.03871.
[8] M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Annals of Mathematics 180 (2014), 773-822. · Zbl 1337.28015 · doi:10.4007/annals.2014.180.2.7
[9] M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures, Annals of Mathematics 175 (2012), 1001-1059. · Zbl 1251.28008 · doi:10.4007/annals.2012.175.3.1
[10] A. Iosevich and B. Liu, Pinned distance problem, slicing measures and local smoothing estimates, preprint, arXiv:1706.09851, 2017. · Zbl 1412.28004
[11] N. H. Katz and T. Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York Journal of Mathematics 7:149-187, 2001. · Zbl 0991.28006
[12] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge, 1995. · Zbl 0819.28004
[13] P. Mattila, Hausdorff dimension, projections, and the fourier transform, Publicacions Matemàtiques 48 (2004), 3-48. · Zbl 1049.28007 · doi:10.5565/PUBLMAT_48104_01
[14] P. Mattila and T. Orponen, Hausdorff dimension, intersections of projections and exceptional plane sections, Proceedings of the American Mathematical Society 144 (2016), 3419-3430. · Zbl 1345.28008 · doi:10.1090/proc/12985
[15] T. Orponen, On the distance sets of self-similar sets, Nonlinearity 25 (2012), 1919-1929. · Zbl 1244.28014 · doi:10.1088/0951-7715/25/6/1919
[16] T. Orponen, On the distance sets of Ahlfors-David regular sets, Advances inMathematics 307 (2017), 1029-1045. · Zbl 1355.28018 · doi:10.1016/j.aim.2016.11.035
[17] R. Pemantle and Y. Peres, Galton-Watson trees with the same mean have the same polar sets, Annals of Probability 23 (1995), 1102-1124. · Zbl 0833.60085 · doi:10.1214/aop/1176988175
[18] Y. Peres and W. Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Mathematical Journal 102 (2000), 193-251. · Zbl 0961.42007 · doi:10.1215/S0012-7094-00-10222-0
[19] Y. Peres and P. Shmerkin, Resonance between Cantor sets, Ergodic Theory and Dynamical Systems 29 (2009), 201-221. · Zbl 1159.37005 · doi:10.1017/S0143385708000369
[20] P. Shmerkin, On distance sets, box-counting and Ahlfors-regular sets, Discrete Analysis 2017 (2017), Paper No. 9. · Zbl 1404.28019
[21] T. Wolff, Decay of circular means of Fourier transforms of measures, International Mathematics Research Notices 10 (1999), 547-567. · Zbl 0930.42006 · doi:10.1155/S1073792899000288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.