×

Models of collapsing and expanding cylindrical source in \(f(R, T)\) theory. (English) Zbl 1412.83008

Summary: We discuss the collapsing and expanding solutions of anisotropic charged cylinder in the context of \(f(R, T)\) theory (\(R\) represents the Ricci scalar and \(T\) denotes the trace of energy-momentum tensor). For this purpose, we take an auxiliary solution of Einstein-Maxwell field equations and evaluate expansion scalar whose negative values lead to collapse and positive values give expansion. For both cases, the behavior of density, pressure, anisotropic parameter, and mass is explored and the effects of charge as well as model parameter on these quantities are examined. The energy conditions are found to be satisfied for both solutions.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A15 Galactic and stellar structure

References:

[1] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Physical Review A: Atomic, Molecular and Optical Physics, 56, 5, 455-459 (1939) · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[2] Misner, C. W.; Sharp, D. H., Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Physical Review A: Atomic, Molecular and Optical Physics, 136, 2, B571-B576 (1964) · Zbl 0129.41102 · doi:10.1103/physrev.136.b571
[3] Misner, C. W.; Sharp, D. H., Spherical Gravitational Collapse with Energy Transport by Radiative Diffusion, Physics Letters, 15, 279-281 (1965) · Zbl 0126.45601
[4] Stark, R. F.; Piran, T., Gravitational-Wave Emission from Rotating Gravitational Collapse, Physical Review Letters, 55, 8, 891-894 (1985) · doi:10.1103/PhysRevLett.55.891
[5] Herrera, L.; le Denmat, G.; Santos, N. O., Dynamical instability for nonadiabatic spherical collapse, Royal Astronomical Society. Monthly Notices, 237, 2, 257-268 (1989) · Zbl 0668.76158 · doi:10.1093/mnras/237.1.257
[6] Harada, T., Final fate of the spherically symmetric collapse of a perfect fluid, Physical Review D: Particles, Fields, Gravitation and Cosmology (1998)
[7] Joshi, P. S.; Dwivedi, I. H., Initial data and the end state of spherically symmetric gravitational collapse, Classical and Quantum Gravity, 16, 1, 41-59 (1999) · Zbl 0961.83032 · doi:10.1088/0264-9381/16/1/003
[8] Sharif, M.; Kausar, H. R., Gravitational Perfect Fluid Collapse in f(R) Gravity, Astrophysics and Space Science, 331, 281 (2011) · Zbl 1209.83034
[9] Cembranos, J. A. R.; Cruz-Dombriz, A. D. L.; Núez, B. M., Gravitational collapse in f(R) theories, Journal of Cosmology and Astroparticle Physics, 04, article no. 021 (2012)
[10] Kausar, H. R.; Philippoz, L.; Jetzer, P., Gravitational wave polarization modes in \(f(R)\) theories, Physical Review D: Particles, Fields, Gravitation and Cosmology, 93, 12 (2016) · doi:10.1103/PhysRevD.93.124071
[11] Harko, T.; Lobo, F. S. N.; Nojiri, S.; Odintsov, S. D., \(f(R, T)\) gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 84, 2 (2011) · doi:10.1103/PhysRevD.84.024020
[12] Harko, T.; Lobo, F. S. N., Generalized curvature-matter couplings in modified gravity, Galaxies, 2, 3, 410-465 (2014) · doi:10.3390/galaxies2030410
[13] Shabani, H.; Farhoudi, M., Cosmological and solar system consequences of f(R,T) gravity models, Physical Review D: Particles, Fields, Gravitation and Cosmology, 90 (2014) · doi:10.1103/PhysRevD.90.044031
[14] Moraes, P. H. R. S., Cosmological solutions from induced matter model applied to 5D f(R,T) gravity and the shrinking of the extra coordinate, The European Physical Journal C, 75, 168 (2015) · doi:10.1140/epjc/s10052-015-3323-y
[15] Noureen, I.; Zubair, M., On dynamical instability of spherical star in \(f\)( R,T) gravity, Astrophysics and Space Science, 356, 1, 103-110 (2015) · doi:10.1007/s10509-014-2202-6
[16] Carvalho, G. A.; Lobato, R. V.; Moraes, P. H. R. S.; Arbañil, J. D. V.; Otoniel, E.; Marinho, R. M.; Malheiro, M., Stellar equilibrium configurations of white dwarfs in the \(f(R, T)\) gravity, The European Physical Journal C, 77, 871 (2017)
[17] Sharif, M.; Bhatti, M. Z., Stability of the expansion-free charged cylinder, Journal of Cosmology and Astroparticle Physics, 10, article no. 056 (2013)
[18] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Stability analysis of stellar radiating filaments, Classical and Quantum Gravity, 34, 14 (2017) · Zbl 1373.83091 · doi:10.1088/1361-6382/aa73b9
[19] Sharif, M.; Farooq, N., Study of the charged spherical stellar model in f(R) gravity, The European Physical Journal Plus, 132, 355 (2017)
[20] Sharif, M.; Farooq, N., Charged bulk viscous cylindrical collapse in \(f(R)\) theory, International Journal of Modern Physics D, 27, 2 (2018) · Zbl 1430.83083 · doi:10.1142/S021827181850013X
[21] Rosseland, S.; Eddington, A. S.; Astron, R., Electrical state of a star, Monthly Notices of the Royal Astronomical Society, 84, 720-728 (1924)
[22] Bonnor, W. B., The equilibrium of a charged sphere, Monthly Notices of the Royal Astronomical Society, 129, 6, 443-446 (1964) · doi:10.1093/mnras/129.6.443
[23] Azam, M.; Mardan, S. A.; Rehman, M. A., Fate of Electromagnetic Field on the Cracking of PSR J1614-2230 in Quadratic Regime, Advances in High Energy Physics, 2015 (2015)
[24] Bhatti, M. Z.; Yousaf, Z., Influence of Electric Charge and Modified Gravity on Density Irregularities, The European Physical Journal C, 76, 219 (2016) · doi:10.1140/epjc/s10052-015-3861-3
[25] Mansour, H.; Lakhal, B. S.; Yanallah, A., Weakly charged compact stars in \(f(R)\) gravity, Journal of Cosmology and Astroparticle Physics, 2018, article no. 6 (2018) · Zbl 1527.83091
[26] Glass, E. N., Generating anisotropic collapse and expansion solutions of Einstein’s equations, General Relativity and Gravitation, 45, 12, 2661-2670 (2013) · Zbl 1283.83011 · doi:10.1007/s10714-013-1609-7
[27] Abbas, G., Collapse and Expansion of Anisotropic Plane Symmetric Source, Astrophysics and Space Science, 350, 307-311 (2014)
[28] Abbas, G., Effects of Electromagnetic Field on The Collapse and Expansion of Anisotropic Gravitating Source, Astrophysics and Space Science, 352, 955-961 (2014)
[29] Abbas, G.; Kanwal, A.; Zubair, M., Anisotropic compact stars in \(f(T)\) gravity, Astrophysics and Space Science, 357, 56 (2015) · doi:10.1007/s10509-015-2337-0
[30] Abbas, G.; Ahmed, R., Models of collapsing and expanding anisotropic gravitating source in f(R, T) theory of gravity, The European Physical Journal C, 77, 441 (2017)
[31] Sharif, M.; Siddiqa, A., Models of charged self-gravitating source in \(f(R, T)\) theory, International Journal of Modern Physics D, 1950005 (2019) · Zbl 1425.83068
[32] Moraes, P. H. R. S., Cosmological solutions from induced matter model applied to 5D \(f(R,T)\) gravity and the shrinking of the extra coordinate, The European Physical Journal C, 75, 168 (2015) · doi:10.1140/epjc/s10052-015-3393-x
[33] Correa, R. A. C.; Moraes, P. H. R. S., Configurational entropy in \(f(R,T)\) brane models, The European Physical Journal C, 76, 100 (2016)
[34] Das, A.; Rahaman, F.; Guha, B. K.; Ray, S., Compact stars in \(f(R, T)\) gravity, The European Physical Journal C, 76, 12 (2016) · doi:10.1140/epjc/s10052-016-4503-0
[35] Das, A.; Ghosh, S.; Guha, B. K.; Das, S.; Rahaman, F.; Ray, S., Gravastars in \(f(R, I)\) gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 95, 12 (2017)
[36] Poplawski, N. J., A Lagrangian description of interacting dark energy, General Relativity and Quantum Cosmology, 1, 1-14 (2006)
[37] Sharif, M.; Ikram, A., Existence of static wormholes in \(f(G, T)\) gravity, International Journal of Modern Physics D: Gravitation, Astrophysics, Cosmology, 27, 1 (2018) · Zbl 1404.83098 · doi:10.1142/S0218271817501826
[38] Maurya, S. K.; Ray, S.; Ghosh, S.; Manna, S.; Smitha, T. T., A generalized family of anisotropic compact object in general relativity, Annals of Physics, 395, 152-169 (2018) · Zbl 1394.85002 · doi:10.1016/j.aop.2018.05.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.