×

Variance of the volume of random real algebraic submanifolds. (English) Zbl 1412.53079

This paper treats the asymptotic problem of the variance of the volume of random real algebraic submanifolds. Let \(\mathcal{X}\) be a smooth complex projective manifold of dimension \(n\). Let \(\mathcal{L}\) be an ample holomorphic line bundle over \(\mathcal{X}\), and let \(\mathcal{E}\) be a rank-\(r\) holomorphic vector bundle over \(\mathcal{X}\) with \(r \in \{ 1, \dots, n \}\). Assume that the real locus \(M\) of \(\mathcal{X}\) is not empty. For any \(d \in \mathbb{N}\), \(\mathbb{R} H^0( \mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d)\) denotes the space of real holomorphic sections of \(\mathcal{E} \otimes \mathcal{L}^d \to \mathcal{X}\), and \(\vert d V_s \vert\) denotes the Riemannian measure, considered as a positive Radon measure on \(M\). When \(s_d\) is a standard Gaussian vector in \(\mathbb{R} H^0( \mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d )\), then \(\vert d V_{s_d} \vert\) is a random positive Radon measure on \(M\). The author studies the vanishing locus \(Z_{s_d}\) in \(M\) of a random real holomorphic section \(s_d\) of \(\mathcal{E} \otimes \mathcal{L}^d\).
For a test function \(\phi \in C^0(M)\) and every \(s \in \mathbb{R}H^0( \mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d )\) vanishing transversally, the real random variable \[ \langle \vert d V_s \vert, \phi \rangle = \int_{x \in Z_s} \, \phi(x) \vert d V_s \vert \tag{1} \] is called linear statistics of degree \(d\) associated with \(\phi\). On the other hand, for \(\phi \in C^0(M)\), its continuity modulus \(\bar{\omega}_{\phi}\) is defined by \[ \bar{\omega}_{\phi} (\varepsilon) := \sup \{ \, \vert \phi(x) - \phi(y) \vert ; \,\, (x,y) \in M^2, \,\, \rho_g(x,y) \leqslant \varepsilon \, \} \tag{2} \] where \(\rho_g(\cdot, \cdot)\) stands for the geodesic distance on \((M, g)\) with a Riemannian metric \(g\). The first main result is as follows:
Theorem A. For \(\beta \in (0, 1/2)\), there exists \(C_{\beta} > 0\) such that, for all \(\alpha \in (0, \alpha_0)\), for all \(\phi \in C^0(M)\), the variance of the linear statistics admits the following asymptotics as \(d \to + \infty\): \[ \begin{split} Var(\langle \vert d V_{s_d} \vert , \phi \rangle) = d^{r - n/2} \left( \int_M \, \phi^2 \vert d V_M \vert \right) \frac{Vol(\mathbb{S}^{n-1})} {( 2 \pi )^r} \mathcal{I}_{n,r} \\ + \Vert \phi \Vert_{\infty}^2 \cdot O( d^{r - n/2- \alpha} ) + \Vert \phi \Vert_{\infty} \bar{\omega}_{\phi}(C_{\beta} d^{- \beta}) O(d^{r - n/2}) \end{split}\tag{3} \] where \[ \begin{split} \mathcal{I}_{n,r} = \frac{1}{2} \int_0^{+ \infty} \left\{ \frac{\mathbb{E} [ \vert det^{\perp}( X(t)) \vert \cdot \vert det^{\perp} (Y(t)) \vert ]}{( 1-e^{-t} )^{r/2}} \right. \\ - (2 \pi)^r \left. \left( \frac{Vol( \mathbb{S}^{n-r} )}{Vol ( \mathbb{S}^n )} \right)^2 \right\} t^{(n-2)/2} \, dt < + \infty. \end{split} \tag{4} \] This implies that, when \(r \in \{ 1, \dots, n-1 \}\), then we obtain an asymptotic of order \(d^{r - n/2}\), as \(d\) goes to infinity, for the variance of the linear statistics associated with \(Z_{s_d}\), including its volume. As a corollary, the following statement can be derived.
Corollary B. Let \(U \subset M\) be an open subset, then as \(d \to + \infty\) \[ \mathbb{P} (Z_{s_d} \cap U = \emptyset) = O(d^{- n/2}) \tag{5} \] holds.
This means that, given an open set \(U \subset M\), it can be shown that the probability that \(Z_{s_ d}\) does not intersect \(U\) is an order of \(d^{- n/2}\) when \(d\) goes to infinity. As a result of almost sure convergent, the author proves:
Theorem C. Assume \(n \geq 3\). Let \((s_d)_{d \in \mathbb{N}} \in \prod_{d \in \mathbb{N}} \mathbb{R} H^0(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d)\) be a random sequence of sections. Then, \(d \nu\)-almost surely, the convergence \[ d^{- r/2} \langle \vert d V_{s_d} \vert , \phi \rangle \to \frac{Vol(\mathbb{S}^{n-r})}{Vol(\mathbb{S}^r)} \left(\int_M \, \phi \vert d V_{s_d} \vert \right) \tag{6} \] holds for \(\forall \phi \in C^0(M)\), as \(d \to + \infty\).
This result means that, when \(n \geq 3\), then the almost sure convergence can be verified for the linear statistics associated with a random sequence of sections of increasing degree. Furthermore, the framework given here contains the case of random real algebraic submanifolds of \(\mathbb{R}\mathbb{P}^n\), obtained as the common zero set of \(r\) independent Kostlan-Shub-Smale polunomials.
For other related works see, e.g., [D. Gayet and J.-Y. Welschinger, J. Inst. Math. Jussieu 14, No. 4, 673–702 (2015; Zbl 1326.32040)] for random real algebraic submanifolds, and also [the author, J. Funct. Anal. 270, No. 8, 3047–3110 (2016; Zbl 1349.58007)] for expected volume of random submanifolds.

MSC:

53C40 Global submanifolds
60G60 Random fields
14P99 Real algebraic and real-analytic geometry
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)

References:

[1] Aza\"\i s, Jean-Marc; Wschebor, Mario, On the roots of a random system of equations. The theorem on Shub and Smale and some extensions, Found. Comput. Math., 5, 2, 125\textendash144 pp. (2005) · Zbl 1101.60035 · doi:10.1007/s10208-004-0119-0
[2] AW2009Jean-Marc Aza\"is and Mario Wschebor, Level sets and extrema of random processes and fields, 1st ed., John Wiley & Sons, Hoboken, NJ, 2009. · Zbl 1168.60002
[3] Bleher, Pavel; Shiffman, Bernard; Zelditch, Steve, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., 142, 2, 351\textendash395 pp. (2000) · Zbl 0964.60096 · doi:10.1007/s002220000092
[4] Bogomolny, E.; Bohigas, O.; Leboeuf, P., Quantum chaotic dynamics and random polynomials, J. Stat. Phys., 85, 5-6, 639\textendash679 pp. (1996) · Zbl 0952.37506 · doi:10.1007/BF02199359
[5] B\"urgisser, Peter, Average Euler characteristic of random real algebraic varieties, C. R. Math. Acad. Sci. Paris, 345, 9, 507\textendash512 pp. (2007) · Zbl 1141.60033 · doi:10.1016/j.crma.2007.10.013
[6] Catlin, David, The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables, Katata, 1997, Trends Math., 1\textendash23 pp. (1999), Birkh\"auser Boston, Boston, MA · Zbl 0941.32002
[7] Dai, Xianzhe; Liu, Kefeng; Ma, Xiaonan, On the asymptotic expansion of Bergman kernel, J. Differential Geom., 72, 1, 1\textendash41 pp. (2006) · Zbl 1099.32003
[8] Dalmao, Federico, Asymptotic variance and CLT for the number of zeros of Kostlan Shub Smale random polynomials, C. R. Math. Acad. Sci. Paris, 353, 12, 1141\textendash1145 pp. (2015) · Zbl 1331.60046 · doi:10.1016/j.crma.2015.09.016
[9] Gayet, Damien; Welschinger, Jean-Yves, Exponential rarefaction of real curves with many components, Publ. Math. Inst. Hautes \'Etudes Sci., 113, 69\textendash96 pp. (2011) · Zbl 1227.32028 · doi:10.1007/s10240-011-0033-3
[10] Gayet, Damien; Welschinger, Jean-Yves, Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu, 14, 4, 673\textendash702 pp. (2015) · Zbl 1326.32040
[11] Gayet, Damien; Welschinger, Jean-Yves, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices, J. Eur. Math. Soc. (JEMS), 18, 4, 733\textendash772 pp. (2016) · Zbl 1408.14187 · doi:10.4171/JEMS/601
[12] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, Wiley Classics Library, xiv+813 pp. (1994), John Wiley & Sons, Inc., New York · Zbl 0836.14001 · doi:10.1002/9781118032527
[13] Kostlan, E., On the distribution of roots of random polynomials. From Topology to Computation: Proceedings of the Smalefest, Berkeley, CA, 1990, 419\textendash431 pp. (1993), Springer, New York · Zbl 0788.60069
[14] Kratz, Marie F.; Le\'on, Jos\'e R., Central limit theorems for level functionals of stationary Gaussian processes and fields, J. Theoret. Probab., 14, 3, 639\textendash672 pp. (2001) · Zbl 0994.60021 · doi:10.1023/A:1017588905727
[15] Krishnapur, Manjunath; Kurlberg, P\"ar; Wigman, Igor, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2), 177, 2, 699\textendash737 pp. (2013) · Zbl 1314.60101 · doi:10.4007/annals.2013.177.2.8
[16] Letendre, Thomas, Expected volume and Euler characteristic of random submanifolds, J. Funct. Anal., 270, 8, 3047\textendash3110 pp. (2016) · Zbl 1349.58007 · doi:10.1016/j.jfa.2016.01.007
[17] Ma, Xiaonan; Marinescu, George, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics 254, xiv+422 pp. (2007), Birkh\"auser Verlag, Basel · Zbl 1135.32001
[18] Ma, Xiaonan; Marinescu, George, Remark on the off-diagonal expansion of the Bergman kernel on compact K\"ahler manifolds, Commun. Math. Stat., 1, 1, 37\textendash41 pp. (2013) · Zbl 1281.53073 · doi:10.1007/s40304-013-0004-8
[19] Ma, Xiaonan; Marinescu, George, Exponential estimate for the asymptotics of Bergman kernels, Math. Ann., 362, 3-4, 1327\textendash1347 pp. (2015) · Zbl 1337.32011 · doi:10.1007/s00208-014-1137-0
[20] Nazarov, Fedor; Sodin, Mikhail, On the number of nodal domains of random spherical harmonics, Amer. J. Math., 131, 5, 1337\textendash1357 pp. (2009) · Zbl 1186.60022 · doi:10.1353/ajm.0.0070
[21] Nazarov, F.; Sodin, M., Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom., 12, 3, 205\textendash278 pp. (2016) · Zbl 1358.60057 · doi:10.15407/mag12.03.205
[22] Nicolaescu, Liviu I., Critical sets of random smooth functions on compact manifolds, Asian J. Math., 19, 3, 391\textendash432 pp. (2015) · Zbl 1341.60081 · doi:10.4310/AJM.2015.v19.n3.a2
[23] Podkorytov, S. S., On the Euler characteristic of a random algebraic hypersurface, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). J. Math. Sci. (N. Y.), 252 104, 4, 1387\textendash1393 pp. (2001) · Zbl 1021.14017 · doi:10.1023/A:1011306603637
[24] Rudnick, Ze\'ev; Wigman, Igor, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincar\'e, 9, 1, 109\textendash130 pp. (2008) · Zbl 1142.60029 · doi:10.1007/s00023-007-0352-6
[25] Shiffman, Bernard; Zelditch, Steve, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys., 200, 3, 661\textendash683 pp. (1999) · Zbl 0919.32020 · doi:10.1007/s002200050544
[26] Shiffman, Bernard; Zelditch, Steve, Number variance of random zeros on complex manifolds, Geom. Funct. Anal., 18, 4, 1422\textendash1475 pp. (2008) · Zbl 1168.32009 · doi:10.1007/s00039-008-0686-3
[27] Shiffman, Bernard; Zelditch, Steve, Number variance of random zeros on complex manifolds, II: smooth statistics, Pure Appl. Math. Q., 6, 4, Special Issue: In honor of Joseph J. Kohn., 1145\textendash1167 pp. (2010) · Zbl 1217.32003 · doi:10.4310/PAMQ.2010.v6.n4.a10
[28] Shiffman, Bernard; Zelditch, Steve; Zrebiec, Scott, Overcrowding and hole probabilities for random zeros on complex manifolds, Indiana Univ. Math. J., 57, 5, 1977\textendash1997 pp. (2008) · Zbl 1169.32002 · doi:10.1512/iumj.2008.57.3700
[29] Shub, M.; Smale, S., Complexity of Bezout’s theorem. II. Volumes and probabilities. Computational algebraic geometry, Nice, 1992, Progr. Math. 109, 267\textendash285 pp. (1993), Birkh\"auser Boston, Boston, MA · Zbl 0851.65031 · doi:10.1007/978-1-4612-2752-6\_19
[30] Silhol, Robert, Real algebraic surfaces, Lecture Notes in Mathematics 1392, x+215 pp. (1989), Springer-Verlag, Berlin · Zbl 0691.14010 · doi:10.1007/BFb0088815
[31] Sodin, Mikhail; Tsirelson, Boris, Random complex zeroes. I. Asymptotic normality, Israel J. Math., 144, 125\textendash149 pp. (2004) · Zbl 1072.60043 · doi:10.1007/BF02984409
[32] Adler, Robert J.; Taylor, Jonathan E., Random fields and geometry, Springer Monographs in Mathematics, xviii+448 pp. (2007), Springer, New York · Zbl 1149.60003
[33] Wigman, Igor, Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys., 298, 3, 787\textendash831 pp. (2010) · Zbl 1213.33019 · doi:10.1007/s00220-010-1078-8
[34] Wschebor, Mario, On the Kostlan-Shub-Smale model for random polynomial systems. Variance of the number of roots, J. Complexity, 21, 6, 773\textendash789 pp. (2005) · Zbl 1122.60053 · doi:10.1016/j.jco.2005.05.005
[35] Zelditch, Steve, Szeg\H o kernels and a theorem of Tian, Int. Math. Res. Not. IMRN, 6, 317\textendash331 pp. (1998) · Zbl 0922.58082 · doi:10.1155/S107379289800021X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.