×

The algebra of generating functions for multiple divisor sums and applications to multiple zeta values. (English) Zbl 1412.11101

Summary: We study the algebra \(\mathcal{MD}\) of generating functions for multiple divisor sums and its connections to multiple zeta values. The generating functions for multiple divisor sums are formal power series in \(q\) with coefficients in \(\mathbb {Q}\) arising from the calculation of the Fourier expansion of multiple Eisenstein series. We show that the algebra \(\mathcal{MD}\) is a filtered algebra equipped with a derivation and use this derivation to prove linear relations in \(\mathcal{MD}\). The (quasi-)modular forms for the full modular group \(\mathrm{SL}_2(\mathbb {Z})\) constitute a subalgebra of \(\mathcal{MD}\), and this also yields linear relations in \(\mathcal{MD}\). Generating functions of multiple divisor sums can be seen as a \(q\)-analogue of multiple zeta values. Studying a certain map from this algebra into the real numbers we will derive a new explanation for relations between multiple zeta values, including those of length 2, coming from modular forms.

MSC:

11M32 Multiple Dirichlet series and zeta functions and multizeta values
11F11 Holomorphic modular forms of integral weight
13J05 Power series rings
33E20 Other functions defined by series and integrals
05A30 \(q\)-calculus and related topics

References:

[1] Andrews, G., Rose, S.: MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and quasi-modular forms. Preprint arXiv:1010.5769 [math.NT] · Zbl 1337.11002
[2] Bachmann, H.: Multiple Zeta-werte und die Verbindung zu Modulformen durch Multiple Eisensteinreihen. Master Thesis, Universität Hamburg (2012) · Zbl 1139.11322
[3] Bachmann, H.: The algebra of bi-brackets and regularised multiple Eisenstein series. Preprint arXiv:1504.08138 [math.NT] · Zbl 1443.11174
[4] Bachmann, H.: Multiple Eisenstein series and \[q\] q-analogues of multiple zeta values. PhD Thesis, Universität Hamburg (in press) · Zbl 1455.11123
[5] Bachmann, H., Tasaka, K.: The double shuffle relations for multiple Eisenstein series. Preprint arXiv:1501.03408 [math.NT] · Zbl 1453.11115
[6] Bachmann, H., Kühn, U.: A short note on a conjecture of Okounkov about a \[q\] q-analogue of multiple zeta values. Preprint arXiv:1407.6796 [math.NT] · Zbl 1444.81021
[7] Bradley, D.: Multiple q-zeta values. J. Algebra 283(2), 752-798 (2005) · Zbl 1114.11075 · doi:10.1016/j.jalgebra.2004.09.017
[8] Costin, O., Garoufalidis, S.: Resurgence of the fractional polylogarithms. Math. Res. Lett. 16(Nr. 5), 817-826 (2009) · Zbl 1201.30044 · doi:10.4310/MRL.2009.v16.n5.a5
[9] Foata, D.: Eulerian polynomials: From Euler’s Time to the Present. The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, vol. 253-273. Springer, New York (2010) · Zbl 1322.01007
[10] Gangl, H.; Kaneko, M.; Zagier, D., Double zeta values and modular forms, 71-106 (2006), Hackensack · Zbl 1122.11057 · doi:10.1142/9789812774415_0004
[11] Hoffman, M.: The Algebra of Multiple Harmonic Series. J. Algebra 194(2), 477-495 (1997). doi:10.1006/jabr.1997.7127 · Zbl 0881.11067 · doi:10.1006/jabr.1997.7127
[12] Hoffman, M., Ihara, K.: Quasi-shuffle products revisited, Max-Planck-Institut für Mathematik Preprint Series (16) (2012) · Zbl 1378.16042
[13] Hoffman, M., Ohno, Y.: Relations of multiple zeta values and their algebraic expression. J. Algebra 262(2), 332-347 (2003) · Zbl 1139.11322 · doi:10.1016/S0021-8693(03)00016-4
[14] Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142, 307-338 (2006) · Zbl 1186.11053 · doi:10.1112/S0010437X0500182X
[15] Kaneko, M., Kurokawa, N., Wakayama, M.: A variation of Euler’s approach to values of the Riemann zeta function. Kyushu J. Math. 57, 175-192 (2003) · Zbl 1067.11053 · doi:10.2206/kyushujm.57.175
[16] MacMahon, P.A.: In: Andrews, G. (ed.) Divisors of Numbers and Their Continuations in the Theory of Partitions. MIT Press, Cambridge (1986). Reprinted: Percy A. MacMahon Collected Papers
[17] Ohno, Y., Okuda, J., Zudilin, W.: Cyclic q-MZSV sum. J. Number Theory 132, 144-155 (2012) · Zbl 1268.11119 · doi:10.1016/j.jnt.2011.08.001
[18] Ohno, Y., Zagier, D.: Multiple zeta values of fixed weight, depth, and height. Indag. Math. (N.S.) 12(4), 483-487 (2001) · Zbl 1031.11053 · doi:10.1016/S0019-3577(01)80037-9
[19] Okuda, J., Takeyama, Y.: On relations for the multiple q-zeta values. Ramanujan J. 14, 379-387 (2007) · Zbl 1211.11099 · doi:10.1007/s11139-007-9053-5
[20] Pupyrev, Yu. A.: Linear and algebraic independence of q-zeta values. Math. Notes 78(4), 563-568 (2005). Translated from Matematicheskie Zametki, vol. 78, no. 4, 2005, pp. 608-613 · Zbl 1160.11338
[21] Takeyama, Y.: The algebra of a q-analogue of multiple harmonic series. Preprint arXiv:1306.6164 [math.NT] · Zbl 1286.11135
[22] Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular Functions of One Variable, VI (Proceedings of Second International Conference, University of Bonn, Bonn, 1976), pp. 105-169. Lecture Notes in Mathematics, vol. 627. Springer, Berlin (1977) · Zbl 0372.10017
[23] Zagier, D., Elliptic modular forms and their applications, 1-103 (2008), Berlin · Zbl 1259.11042
[24] Zhao, J.: Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 14, 189-221 (2007) · Zbl 1200.11065 · doi:10.1007/s11139-007-9025-9
[25] Zudilin, V.V.: Diophantine problems for q-zeta values. Math. Notes 72(6), 858-862 (2002). Translated from Matematicheskie Zametki, vol. 72, no. 6, 2002, pp. 936-940 · Zbl 1044.11066 · doi:10.1023/A:1021450231834
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.