×

Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. (English) Zbl 1410.76013

Summary: The present study aimes to investigate the natural convection heat transfer in a power-law, non-Newtonian fluid under an applied magnetic field inside a C-shaped cavity using the finite difference lattice Boltzmann method (FDLBM). Temperature distribution at the wall on the left side is non-uniform and sinusoidal with the cold wall on the right side. Both top and bottom horizontal walls of the cavity were insulated against heat and mass transfer. The Boussinesq approximation is used due to negligible density variations, making the hydrodynamic field sensitive to the thermal field. Furthermore, the D\(_2\)Q\(_9\) lattice arrangement was used for the density and energy distribution functions. This study investigates the effects of the Rayleigh number, exponential function index, aspect ratio, and the Hartmann number on the flow and temperature fields. The results show that the heat transfer rate increases with increasing Rayleigh number. Moreover, it is found that the Nusselt number decreases with increasing power-law index (\(n\)) at higher Rayleigh numbers and that an increase in the Hartmann number results in a reduced heat transfer rate. The reduction in the heat transfer rate caused by the increased Hartmann number in the shear thinning fluids is more than that in shear thickening fluids. The Nusselt number decreases with increasing cavity aspect ratio for the Newtonian and shear thinning fluids, whereas for shear thickening fluids, the Nusselt number initially increases and then decreases.

MSC:

76A05 Non-Newtonian fluids
76M28 Particle methods and lattice-gas methods
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] de Vahl Davis, G., Natural convection of air in a square cavity: a bench mark numerical solution, Int J Numer Method Fluid, 3, 249-264, (1983) · Zbl 0538.76075
[2] Ostrach, S., Natural convection in enclosures, J Heat Transf, 110, 1175-1190, (1988)
[3] Aydin, O.; Ünal, A.; Ayhan, T., Natural convection in rectangular enclosures heated from one side and cooled from the ceiling, Int J Heat Mass Transf, 42, 2345-2355, (1999) · Zbl 1042.76557
[4] Saitoh, T.; Hirose, K., High-accuracy bench mark solutions to natural convection in a square cavity, Comput Mech, 4, 417-427, (1989) · Zbl 0691.76087
[5] Kefayati, G. R.; Hosseinizadeh, S. F.; Gorji, M.; Sajjadi, H., Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO_{2} nanofluid, Int Commun Heat Mass Transf, 38, 6, 798-805, (2011)
[6] He, Y.; Qi, C.; Hu, Y.; Qin, B.; Li, F.; Ding, Y., Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity, Nanoscale Res Lett, 6, 184, (2011)
[7] Kalteh, M.; Hasani, H., Lattice Boltzmann simulation of nanofluid free convection heat transfer in an {\scl}-shaped enclosure, Superlattices Microstruct, 66, 112-128, (2014)
[8] Guiet, J.; Reggio, M.; Vasseur, P., Natural convection of nanofluids in a square enclosure with a protruding heater, Adv Mech Eng, 4, (2012)
[9] Mahmoodi, M., Numerical simulation of free convection of a nanofluid in {\scl}-shaped cavities, Int J Thermal Sci, 50, 1731-1740, (2011)
[10] Mahmoodi, M.; Hashemi, S. M., Numerical study of natural convection of a nanofluid in C-shaped enclosures, Int J Thermal Sci, 55, 76-89, (2012)
[11] Karimipour, A.; Taghipour, A.; Malvandi, A., Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux, J Magn Magn Mater, 419, 420-428, (2016)
[12] Esfe, M. H.; Arani, A. A.A.; Karimiopour, A.; Esforjani, S. S.M., Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids, Heat Transf Res, 45, 279-292, (2014)
[13] Nasiri, H.; Jamalabadi, M. Y.A.; Sadeghi, R.; Safaei, M. R.; Nguyen, T. K.; Shadloo, M. S., A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows, J Therm Anal Calorim, 1-9, (2018)
[14] Rashidi, M. M.; Nasiri, M.; Shadloo, M. S.; Yang, Z., Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches, Heat Transf Eng, 38, 853-866, (2017)
[15] Safaei, M. R.; Ahmadi, G.; Goodarzi, M. S.; Safdari Shadloo, M.; Goshayeshi, H. R.; Dahari, M., Heat transfer and pressure drop in fully developed turbulent flows of graphene nanoplatelets-silver/water nanofluids, Fluids, 1, 20, (2016)
[16] Safaei, M. R.; Gooarzi, M.; Akbari, O. A.; Shadloo, M. S.; Dahari, M., Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications, Electronics cooling, (2016), InTech
[17] Safaei, M. R.; Safdari Shadloo, M.; Goodarzi, M. S.; Hadjadj, A.; Goshayeshi, H. R.; Afrand, M., A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits, Adv Mech Eng, 8, (2016), doi:1687814016673569
[18] Sadeghi, R.; Shadloo, M., Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method, Numer Heat Transf, Part A, 71, 560-574, (2017)
[19] Sadeghi, R.; Shadloo, M.; Hopp-Hirschler, M.; Hadjadj, A.; Nieken, U., Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media, Comput Math Appl, 75, 2445-2465, (2018) · Zbl 1409.76117
[20] Sadeghi, R.; Shadloo, M. S.; Jamalabadi, M. Y.A.; Karimipour, A., A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling, Int Commun Heat Mass Transf, 79, 58-66, (2016)
[21] Karimipour, A.; Esfe, M. H.; Safaei, M. R.; Semiromi, D. T.; Jafari, S.; Kazi, S., Mixed convection of copper-water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method, Phys A, 402, 150-168, (2014)
[22] Karimipour, A.; Nezhad, A. H.; D’Orazio, A.; Esfe, M. H.; Safaei, M. R.; Shirani, E., Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, Eur J Mech-B/Fluids, 49, 89-99, (2015)
[23] Karimipour, A.; Nezhad, A. H.; D’Orazio, A.; Shirani, E., Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method, Int J Therm Sci, 54, 142-152, (2012)
[24] Karimipour, A.; Nezhad, A. H.; D’Orazio, A.; Shirani, E., The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method, J Theor Appl Mech, 51, 447-462, (2013)
[25] Karimipour, A., New correlation for Nusselt number of nanofluid with Ag/Al_{2}O_{3}/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method, Int J Therm Sci, 91, 146-156, (2015)
[26] Sheikholeslami, M.; Ganji, D. D., Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method, Phys A, 417, 273-286, (2015)
[27] Mahmoodi, M.; Esfe, M. H.; Akbari, M.; Karimipour, A.; Afrand, M., Magneto-natural convection in square cavities with a source-sink pair on different walls, Int J Appl Electrom Mech, 47, 21-32, (2015)
[28] Mahmoudi, A.; Mejri, I.; Abbassi, M. A.; Omri, A., Analysis of the entropy generation in a nanofluid-filled cavity in the presence of magnetic field and uniform heat generation/absorption, J Mol Liq, 198, 63-77, (2014)
[29] Sheikholeslami, M.; Rashidi, M.; Hayat, T.; Ganji, D., Free convection of magnetic nanofluid considering MFD viscosity effect, J Mol Liq, 218, 393-399, (2016)
[30] Kefayati, G., Natural convection of ferrofluid in a linearly heated cavity utilizing LBM, J Mol Liq, 191, 1-9, (2014)
[31] Afrand, M.; Rostami, S.; Akbari, M.; Wongwises, S.; Esfe, M. H.; Karimipour, A., Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium, Int J Heat Mass Transf, 90, 418-426, (2015)
[32] Afrand, M.; Toghraie, D.; Karimipour, A.; Wongwises, S., A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field, J Magn Magn Mater, 430, 22-28, (2017)
[33] Shadloo, M.; Kimiaeifar, A., Application of homotopy perturbation method to find an analytical solution for magnetohydrodynamic flows of viscoelastic fluids in converging/diverging channels, Proc Inst Mech Eng, Part C, 225, 347-353, (2011)
[34] Teamah, M. A.; El-Maghlany, W. M., Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption, Int J Thermal Sci, 58, 130-142, (2012)
[35] Sheikholeslami, M.; Shehzad, S., Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM, Int J Heat Mass Transf, 113, 796-805, (2017)
[36] Mahmoudi, A.; Mejri, I.; Abbassi, M. A.; Omri, A., Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution, Powder Technol, 256, 257-271, (2014)
[37] Ozoe, H.; Churchill, S. W., Hydrodynamic stability and natural convection in Ostwald‐de Waele and Ellis fluids: The development of a numerical solution, AIChE J, 18, 1196-1207, (1972)
[38] Kim, G. B.; Hyun, J. M.; Kwak, H. S., Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure, Int J Heat Mass Transf, 46, 3605-3617, (2003) · Zbl 1042.76563
[39] Lamsaadi, M.; Naimi, M.; Hasnaoui, M., Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids, Energy Convers Manag, 47, 2535-2551, (2006)
[40] Turan, O.; Sachdeva, A.; Chakraborty, N.; Poole, R. J., Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures, J Nonnewton Fluid Mech, 166, 1049-1063, (2011) · Zbl 1282.76169
[41] Turan, O.; Sachdeva, A.; Poole, R. J.; Chakraborty, N., Aspect ratio and boundary conditions effects on laminar natural convection of power-law fluids in a rectangular enclosure with differentially heated side walls, Int J Heat Mass Transf, 60, 722-738, (2013)
[42] Ternik, P.; Rudolf, R., Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls, Int J Simul Model, 12, 5-16, (2013)
[43] I. Vinogradov, L. Khezzar, and D. Siginer, Heat transfer of non-Newtonian dilatant power law fluids in square and rectangular cavities, 2011.; I. Vinogradov, L. Khezzar, and D. Siginer, Heat transfer of non-Newtonian dilatant power law fluids in square and rectangular cavities, 2011.
[44] Matin, M. H.; Pop, I.; Khanchezar, S., Natural convection of power-law fluid between two-square eccentric duct annuli, J Nonnewton Fluid Mech, 197, 11-23, (2013)
[45] Guha, A.; Pradhan, K., Natural convection of non-Newtonian power-law fluids on a horizontal plate, Int J Heat Mass Transf, 70, 930-938, (2014)
[46] Zhang, H.; Xu, T.; Zhang, X.; Zheng, L.; Wang, Y.; Zong, Y., Numerical study on the skin friction and heat transfer coefficient of non-newtonian power law fluid in boundary layer, Procedia Eng, 121, 824-829, (2015)
[47] Moraga, N. O.; Parada, G. P.; Vasco, D. A., Power law non-Newtonian fluid unsteady conjugate three-dimensional natural convection inside a vessel driven by surrounding air thermal convection in a cavity, Int J Thermal Sci, 107, 247-258, (2016)
[48] Kefayati, G. R., Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM, Int Commun Heat Mass Transf, 53, 139-153, (2014)
[49] Kefayati, G. R., Mesoscopic simulation of mixed convection on non-Newtonian nanofluids in a two sided lid-driven enclosure, Adv Powder Technol, 26, 576-588, (2015)
[50] Raisi, A., Natural convection of Non-Newtonian fluids in a square cavity with a localized heat source, Stroj Vestn/J Mech Eng, 62, (2016)
[51] Raisi, A., The effect of conductive baffles on natural convection in a power-law fluid-filled square cavity, J Braz Soc Mech Sci Eng, 40, 33, (2018)
[52] Chhabra, R. P.; Richardson, J. F., Non-Newtonian flow and applied rheology: engineering applications, (2011), Butterworth-Heinemann
[53] Kefayati, G. R., FDLBM simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a linearly heated cavity, Powder Technol, 256, 87-99, (2014)
[54] Kefayati, G. R., Double-diffusive mixed convection of pseudoplastic fluids in a two sided lid-driven cavity using FDLBM, J Taiwan Inst Chem Eng, 45, 2122-2139, (2014)
[55] Kefayati, G. R., FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field, Int J Thermal Sci, 95, 29-46, (2015)
[56] Kefayati, G. R., FDLBM simulation of double-diffusive mixed convection of shear-thinning fluids between two-square concentric duct annuli, Heat Mass Transf, 51, 1505-1521, (2015)
[57] Kefayati, G. R., Simulation of vertical and horizontal magnetic fields effects on non-Newtonian power-law fluids in an internal flow using FDLBM, Comput Fluids, 114, 12-25, (2015) · Zbl 1390.76024
[58] Nor Azwadi, C.; Tanahashi, T., Simplified finite difference thermal lattice Boltzmann method, Int J Modern Phys B, 22, 3865-3876, (2008) · Zbl 1149.76620
[59] Fu, S.; So, R.; Leung, W. W.F., Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows, J Comput Phys, 229, 6084-6103, (2010) · Zbl 1425.76061
[60] Fu, S.; So, R.; Leung, W. W.F., Linearized-Boltzmann-type-equation-based finite difference method for thermal incompressible flow, Comput Fluids, 69, 67-80, (2012) · Zbl 1365.76191
[61] Fu, S. C., Numerical simulation of blood flow in stenotic arteries, (2011), The Hong Kong Polytechnic University
[62] Khezzar, L.; Siginer, D.; Vinogradov, I., Natural convection of power law fluids in inclined cavities, Int J Thermal Sci, 53, 8-17, (2012)
[63] Kefayati, G. R., Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity, Chem Eng Res Des, 94, 337-354, (2015)
[64] Goodarzi, M.; Safaei, M. R.; Oztop, H. F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N., Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium, Sci World J, 2014, (2014)
[65] Esfandiary, M.; Mehmandoust, B.; Karimipour, A.; Pakravan, H. A., Natural convection of Al_{2}O_{3}-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon, Int J Thermal Sci, 105, 137-158, (2016)
[66] Bahrami, M.; Akbari, M.; Karimipour, A.; Afrand, M., An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior, Exp Thermal Fluid Sci, 79, 231-237, (2016)
[67] Zadkhast, M.; Toghraie, D.; Karimipour, A., Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation, J Thermal Anal Calorim, 129, 2, 859-867, (2017)
[68] Karimipour, A.; D’Orazio, A.; Shadloo, M. S., The effects of different nano particles of Al_{2}O_{3} and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump, Phys E, 86, 146-153, (2017)
[69] Yarmand, H.; Gharehkhani, S.; Kazi, S. N.; Sadeghinezhad, E.; Safaei, M. R., Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid, Sci World J, 2014, (2014)
[70] Behnampour, A.; Akbari, O. A.; Safaei, M. R.; Ghavami, M.; Marzban, A.; Shabani, G. A.S.; Mashayekhi, R., Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs, Phys E, 91, 15-31, (2017)
[71] Safaei, M. R.; Rahmanian, B.; Goodarzi, M., Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method, Int J Phys Sci, 6, 33, 7456-7470, (2011)
[72] Coelho, R. C.; Doria, M. M., Lattice Boltzmann method for semiclassical fluids, Comput Fluids, 165, 144-159, (2018) · Zbl 1390.76704
[73] Lee, H. C.; Bawazeer, S.; Mohamad, A. A., Boundary conditions for lattice Boltzmann method with multispeed lattices, Comput Fluids, 162, 152-159, (2018) · Zbl 1390.76734
[74] Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S., Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method, Comput Fluids, 166, 200-208, (2018) · Zbl 1390.76708
[75] Montessori, A.; Lauricella, M.; La Rocca, M.; Succi, S.; Stolovicki, E.; Ziblat, R.; Weitz, D., Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows, Comput Fluids, 167, 33-39, (2018) · Zbl 1390.76747
[76] Nezhad, J. R.; Mirbozorgi, S. A., An immersed boundary-lattice Boltzmann method to simulate chaotic micromixers with baffles, Comput Fluids, 167, 206-214, (2018) · Zbl 1390.76758
[77] Qiu, R. F.; Zhu, C. X.; Chen, R. Q.; Zhu, J. F.; You, Y. C., A double-distribution-function lattice Boltzmann model for high-speed compressible viscous flows, Comput Fluids, 166, 24-31, (2018) · Zbl 1390.76757
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.