×

Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. (English) Zbl 1409.76105

Summary: Numerical approximation of the five-equation two-phase flow of A. K. Kapila et al. [Phys. Fluids 13, No. 10, Paper No. 3002, 23 p. (2001; Zbl 1184.76268)] is examined. This model has shown excellent capabilities for the numerical resolution of interfaces separating compressible fluids as well as wave propagation in compressible mixtures [A. Murrone and H. Guillard, J. Comput. Phys. 202, No. 2, 664–698 (2005; Zbl 1061.76083); R. Abgrall and V. Perrier, Multiscale Model. Simul. 5, No. 1, 84–115 (2006; Zbl 1236.76053); F. Petitpas et al., J. Comput. Phys. 225, No. 2, 2214–2248 (2007; Zbl 1183.76831)].
However, its numerical approximation poses some serious difficulties. Among them, the non-monotonic behavior of the sound speed causes inaccuracies in wave’s transmission across interfaces. Moreover, volume fraction variation across acoustic waves results in difficulties for the Riemann problem resolution, and in particular for the derivation of approximate solvers. Volume fraction positivity in the presence of shocks or strong expansion waves is another issue resulting in lack of robustness. To circumvent these difficulties, the pressure equilibrium assumption is relaxed and a pressure non-equilibrium model is developed. It results in a single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms. It fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them. This formulation considerably simplifies numerical resolution.
Following a strategy developed previously for another flow model [R. Saurel and R. Abgrall, J. Comput. Phys. 150, No. 2, 425–467(1999; Zbl 0937.76053)]], the hyperbolic part is first solved without relaxation terms with a simple, fast and robust algorithm, valid for unstructured meshes. Second, stiff relaxation terms are solved with a Newton method that also guarantees positivity and robustness. The algorithm and model are compared to exact solutions of the Euler equations as well as solutions of the five-equation model under extreme flow conditions, for interface computation and cavitating flows involving dynamics appearance of interfaces. In order to deal with correct dynamic of shock waves propagating through multiphase mixtures, the artificial heat exchange method of Petitpas et al. [loc. cit.] is adapted to the present formulation.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, Journal of Computational Physics, 125, 150-160 (1996) · Zbl 0847.76060
[2] Abgrall, R.; Karni, S., Computations of compressible multifluids, Journal of Computational Physics, 169, 2, 594-623 (2001) · Zbl 1033.76029
[3] Abgrall, R.; Perrier, V., Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flows, SIAM Journal of Multiscale and Modeling and Simulation, 5, 84-115 (2006) · Zbl 1236.76053
[4] Abgrall, R.; Saurel, R., Discrete equations for physical and numerical compressible multiphase mixtures, Journal of Computational Physics, 186, 2, 361-396 (2003) · Zbl 1072.76594
[5] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International Journal of Multiphase Flow, 12, 6, 861 (1986) · Zbl 0609.76114
[6] Bdzil, J. B.; Menikoff, R.; Son, S. F.; Kapila, A. K.; Steward, D. S., Two-phase modeling of a deflagration-to detonation transition in granular materials: A critical exmination of modeling issues, Physics of Fluids, 11, 2, 378-402 (1999) · Zbl 1147.76317
[7] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Computer Methods in Applied Mechanics and Engineering, 99, 235-394 (1992) · Zbl 0763.73052
[8] Chinnayya, A.; Daniel, E.; Saurel, R., Computation of detonation waves in heterogeneous energetic materials, Journal of Computational Physics, 196, 490-538 (2004) · Zbl 1109.76335
[9] Cochran, G.; Chan, J., Shock initiation and detonation models in one and two dimensions, CID-18024 Lawrence National Laboratory Report, 2, 1-2 (1979)
[10] Courant, R.; Friedrichs, K., Supersonic Flow and Shock Waves (1948), Springer · Zbl 0041.11302
[11] Coutier-Delgosha, O.; Fortes-Patella, R.; Reboud, J. L.; Hakimi, N.; Hirsch, C., Stability of preconditioned Navier-Stockes equations associated with a cavitation model, Computers and Fluids, 34, 319-349 (2005) · Zbl 1181.76101
[12] Davis, S. F., Simplified second order Godunov type methods, SIAM Journal of Scientific and Statistical Computing, 9, 445-473 (1988) · Zbl 0645.65050
[13] A. Dervieux, F. Thomasset, A finite element method for the simulation of Rayleigh-Taylor instability, in: Approximation methods for Navier-Stokes problems, Proceedings of the Symposium, Paderborn, West Germany, September 9-15, 1979, Springer-Verlag, Berlin, 1980, pp. 145-158.; A. Dervieux, F. Thomasset, A finite element method for the simulation of Rayleigh-Taylor instability, in: Approximation methods for Navier-Stokes problems, Proceedings of the Symposium, Paderborn, West Germany, September 9-15, 1979, Springer-Verlag, Berlin, 1980, pp. 145-158.
[14] Farhat, C.; Roux, F. X., A method for finite element tearing and interconnecting and its parallel solution algorithm, International Journal for Numerical Methods in Engineering, 32, 1205-1227 (1991) · Zbl 0758.65075
[15] N. Favrie, S. Gavrilyuk, R. Saurel, Diffuse solid-fluid interface model in cases of extreme deformations, Journal of Computational Physics, submitted for publication.; N. Favrie, S. Gavrilyuk, R. Saurel, Diffuse solid-fluid interface model in cases of extreme deformations, Journal of Computational Physics, submitted for publication. · Zbl 1280.74013
[16] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of Computational Physics, 152, 2, 457-492 (1999) · Zbl 0957.76052
[17] Gavrilyuk, S.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, Journal of Computational Physics, 227, 5, 2941-2969 (2008) · Zbl 1155.74020
[18] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K. M.; Zhang, Q.; Zeng, Y., Three dimensional front tracking, SIAM Journal of Scientific Computing, 19, 703-727 (1998) · Zbl 0912.65075
[19] Gueyffier, D.; Li, L.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, Journal of Computational Physics, 152, 423-456 (1999) · Zbl 0954.76063
[20] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39, 201-255 (1981) · Zbl 0462.76020
[21] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian Eulerian computing method for all flow speeds, Journal of Computational Physics, 135, 203-216 (1974) · Zbl 0938.76068
[22] Hou, T. Y.; Le Floch, P., Why non-conservative schemes converge to the wrong solution: error analysis, Mathematics of Computation, 62, 497-530 (1994) · Zbl 0809.65102
[23] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids, 13, 10, 3002-3024 (2001) · Zbl 1184.76268
[24] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, Journal of Computational Physics, 112, 31-43 (1994) · Zbl 0811.76044
[25] Khoo, B. C.; Liu, T. G.; Wang, C. W., The ghost fluid method for compressible gas-water simulations, Journal of Computational Physics, 204, 193 (2005) · Zbl 1190.76160
[26] Koren, B.; Lewis, M. R.; van Brummelen, E. H.; van Leer, B., Riemann-problem and level-set approaches for homentropic two-fluid computations, Journal of Computational Physics, 181, 654-674 (2002) · Zbl 1178.76281
[27] Layes, G.; Le Métayer, O., Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion, Physics of Fluids, 19, 042105 (2007) · Zbl 1146.76458
[28] E.L. Lee, H.C. Horning, J.W. Kury, Adiabatic Expansion of High Explosives Detonation Products, Lawrence Radiation Laboratory, University of California, Livermore, TID 4500-UCRL 50422, 1968.; E.L. Lee, H.C. Horning, J.W. Kury, Adiabatic Expansion of High Explosives Detonation Products, Lawrence Radiation Laboratory, University of California, Livermore, TID 4500-UCRL 50422, 1968.
[29] Le Metayer, O.; Massoni, J.; Saurel, R., Modeling evaporation fronts with reactive Riemann solvers, Journal of Computational Physics, 205, 567-610 (2005) · Zbl 1088.76051
[30] LeVeque, R. J.; Shyue, Keh-Ming, Two-dimensional front tracking based on high resolution wave propagation methods, Journal of Computational Physics, 123, 2, 354-368 (1996) · Zbl 0849.65063
[31] Massoni, J.; Saurel, R.; Baudin, G.; Demol, G., A mechanistic model for shock initiation of solid explosives, Physics of Fluids, 11, 3, 710-736 (1999) · Zbl 1147.76456
[32] Miller, G. H.; Puckett, E. G., A high-order Godunov method for multiple condensed phases, Journal of Computational Physics, 128, 1, 134-164 (1996) · Zbl 0861.65117
[33] Miller, G. H.; Colella, P., A high-order Eulerian Godunov method for elastic-plastic flows in solids, Journal of Computational Physics, 167, 131-176 (2001) · Zbl 0997.74078
[34] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion: the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities, Journal of Computational Physics, 100, 209 (1992) · Zbl 0758.76044
[35] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, 202, 2, 664-698 (2005) · Zbl 1061.76083
[36] Osher, S.; Fedkiw, R., Level set methods: an overview and some recent results, Journal of Computational Physics, 169, 463-502 (2001) · Zbl 0988.65093
[37] Petitpas, F.; Franquet, E.; Saurel, R.; Le Metayer, O., A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics, 225, 2, 2214-2248 (2007) · Zbl 1183.76831
[38] F. Petitpas, R. Saurel, E. Franquet, A. Chinnayya, A., Modelling detonation waves in condensed materials: multiphase CJ conditions and multidimensional computations, Shock waves, submitted for publication.; F. Petitpas, R. Saurel, E. Franquet, A. Chinnayya, A., Modelling detonation waves in condensed materials: multiphase CJ conditions and multidimensional computations, Shock waves, submitted for publication. · Zbl 1255.76063
[39] Perigaud, G.; Saurel, R., A compressible flow model with capillary effects, Journal of Computational Physics, 209, 139-178 (2005) · Zbl 1329.76301
[40] Saurel, R.; Abgrall, R., A multiphase Godunov method for multifluid and multiphase flows, Journal of Computational Physics, 150, 425-467 (1999) · Zbl 0937.76053
[41] Saurel, R.; Le Metayer, O., A multiphase model for interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics, 431, 239-271 (2001) · Zbl 1039.76069
[42] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degrees of freedom: application to shock-bubble interaction, Journal of Fluid Mechanics, 495, 283-321 (2003) · Zbl 1080.76062
[43] Saurel, R.; Franquet, E.; Daniel, E.; Le Metayer, O., A relaxation-projection method for compressible flows. Part I. The numerical equation of state for the Euler equations, Journal of Computational Physics, 223, 2, 822-845 (2007) · Zbl 1183.76840
[44] Saurel, R.; Le Metayer, O.; Massoni, J.; Gavrilyuk, S., Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 3, 209-232 (2007) · Zbl 1195.76245
[45] Saurel, R.; Petitpas, F.; Abgrall, R., Modeling phase transition in metastable liquids. Application to cavitating and flashing flows, Journal of Fluid Mechanics, 607, 313-350 (2008) · Zbl 1147.76060
[46] Scheffer, D. R.; Zukas, J. A., Practical aspects of numerical simulation of dynamic events: material interfaces, International Journal of Impact Engineering, 24, 5-6, 821-842 (2000)
[47] Sethian, J., Evolution, implementation and application of level set and fast marching methods for advancing fronts, Journal of Computational Physics, 169, 503-555 (2001) · Zbl 0988.65095
[48] E. Sinibaldi, Implicit preconditioned numerical schemes for the simulation of three-dimensional barotropic flows, PhD Thesis, Scuola Normale Superiore di Pisa, Italy, 2006.; E. Sinibaldi, Implicit preconditioned numerical schemes for the simulation of three-dimensional barotropic flows, PhD Thesis, Scuola Normale Superiore di Pisa, Italy, 2006. · Zbl 1128.76003
[49] Stewart, H. B.; Wendroff, B., Two-phase flow: models and methods, Journal of Computational Physics, 56, 3, 363-409 (1984) · Zbl 0596.76103
[50] Titarev, V. A.; Romenski, E.; Toro, E. F., MUSTA type upwind fluxes for nonlinear elasticity, International Journal of Numerical Methods in Engineering, 73, 7, 897-926 (2007) · Zbl 1159.74046
[51] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[52] Toro, E. F., Riemann Solvers and Numerical Methods for Fluids Dynamics (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0888.76001
[53] van Brummelen, E. H.; Koren, B., A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows, Journal of Computational Physics, 185, 289-308 (2003) · Zbl 1047.76063
[54] Wood, A. B., A Textbook of Sound (1930), G. Bell and Sons Ltd.: G. Bell and Sons Ltd. London · JFM 56.0717.07
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.