×

Weaving \(K\)-frames in Hilbert spaces. (English) Zbl 1407.42022

Frames in a Hilbert space were introduced by R. J. Duffin and A. C. Schaeffer [Trans. Am. Math. Soc. 72, 341–366 (1952; Zbl 0049.32401)]. Motivated by examples arising from sampling theory in [“Atomic system for subspaces”, in: Proceedings of the international conference on sampling theory and applications, SampTA 2001. 163–165 (2001); https://www.researchgate.net/profile/Hans_Feichtinger/publication/2857251_Atomic_Systems_for_Subspaces/links/0912f50b0749dad8ac000000.pdf], H. G. Feichtinger and T. Werther introduced a family of analysis and synthesis systems with frame like properties for closed subspaces of Hilbert spaces. These systems were termed as atomic systems or local atoms. In [Appl. Comput. Harmon. Anal. 32, No. 1, 139–144 (2012; Zbl 1230.42038)], L. Găvruţa studied atomic systems with reference to a bounded linear operator \(K\) on a Hilbert space \(\mathcal{H}\). These are called \(K\)-frames. In [Oper. Matrices 10, No. 4, 1093–1116 (2016; Zbl 1358.42025)], T. Bemrose et al. introduced the notion of weaving frames motivated by a problem in distributed signal processing.
In the paper under review, the authors introduce and study weaving \(K\)-frames. The authors give some necessary and sufficient conditions for weaving \(K\)-frames. One of the main results of the paper states that woven \(K\)-frames and weakly woven \(K\)-frames are equivalent.

MSC:

42C15 General harmonic expansions, frames
42C30 Completeness of sets of functions in nontrigonometric harmonic analysis
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Bemrose, T; Casazza, PG; Gröchenig, K; Lammers, MC; Lynch, RG, Weaving frames, Oper. Matrices, 10, 1093-1116, (2016) · Zbl 1358.42025 · doi:10.7153/oam-10-61
[2] Casazza, P.G., Lynch, R.G.: Weaving properties of Hilbert space frames. In: Proceedings of the SampTA, pp. 110-114 (2015) · Zbl 1268.42067
[3] Casazza, PG; Freeman, D; Lynch, RG, Weaving Schauder frames, J. Approx. Theory, 211, 42-60, (2016) · Zbl 1360.46007 · doi:10.1016/j.jat.2016.07.001
[4] Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Birkhäuser, Basel (2012) · Zbl 1257.42001
[5] Casazza, PG, The art of frame theory, Taiwanese J. Math., 4, 129-202, (2000) · Zbl 0966.42022 · doi:10.11650/twjm/1500407227
[6] Casazza, P.G., Lynch, R.G.: A brief introduction to Hilbert space frame theory and its applications. In: Proceedings of Symposia in Applied Mathematics, Vol. 73 (2016) · Zbl 1356.42020
[7] Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2002) · Zbl 1348.42033
[8] Deepshikha; Vashisht, LK, On perturbation of local atoms for subspaces, Poincare J. Anal. Appl., 2, 129-137, (2015) · Zbl 1352.42040
[9] Deepshikha; Vashisht, LK; Verma, G, Generalized weaving frames for operators in Hilbert spaces, Results Math., 72, 1369-1391, (2017) · Zbl 1385.42028 · doi:10.1007/s00025-017-0704-6
[10] Deepshikha, Garg, S., Vashisht, L.K., Verma, G.: On weaving fusion frames for Hilbert spaces. In: Proceedings of the SampTA, pp. 381-385 (2017) · Zbl 1385.42028
[11] Deepshikha, Vashisht, L.K.: On weaving frames. Houston J. Math., to appear · Zbl 1365.42028
[12] Dörfler, M., Faulhuber, M.: Multi-window weaving frames. In: Proceedings of the SampTA, pp. 373-376 (2017) · Zbl 0146.12503
[13] Douglas, RG, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Am. Math. Soc., 17, 413-415, (1966) · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1
[14] Feichtinger, HG; Werther, T; Zayed, L (ed.), Atomic systems for subspaces, 163-165, (2001), FL
[15] Feichtinger, HG; Gröchenig, K, Irregular sampling theorems and series expansion of band-limited functions, J. Math. Anal. Appl., 167, 530-556, (1992) · Zbl 0776.42021 · doi:10.1016/0022-247X(92)90223-Z
[16] Gǎvruta, L, Frames for operators, Appl. Comput. Harmon. Anal., 32, 139-144, (2012) · Zbl 1230.42038 · doi:10.1016/j.acha.2011.07.006
[17] Gǎvruta, L, Perturbation of \(K\)-frames, Bul. St. Univ. Politehnica Timisoara Seria Mat. Fiz. Tom., 56, 48-53, (2011) · Zbl 1349.42060
[18] Gǎvruta, L.: New results on frames for operators. In: Proceedings of the International Conference on Sciences, Oradea (2011)
[19] Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001) · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[20] Li, S; Ogawa, H, Pseudo-duals of frames with applications, Appl. Comput. Harmon. Anal., 11, 289-304, (2001) · Zbl 0984.42024 · doi:10.1006/acha.2001.0347
[21] Vashisht, L.K., Garg, S.,Deepshikha, Das, P.K.: On generalized weaving frames in Hilbert spaces. Rocky Mountain J. Math., to appear. https://projecteuclid.org/euclid.rmjm/1488596552 · Zbl 1392.42030
[22] Vashisht, L.K., Deepshikha.: Weaving properties of generalized continuous frames generated by an iterated function system. J. Geom. Phys. 110, 282-295 (2016) · Zbl 1417.42038
[23] Vashisht, L.K., Deepshikha.: On continuous weaving frames. Adv. Pure Appl. Math. 8(1), 15-31 (2017) · Zbl 1365.42028
[24] Xiao, X; Zhu, Y; Gǎvruta, L, Some properties of \(K\)-frames in Hilbert spaces, Results. Math., 63, 1243-1255, (2013) · Zbl 1268.42067 · doi:10.1007/s00025-012-0266-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.