×

A time hierarchy theorem for the LOCAL model. (English) Zbl 1405.68116

Summary: The celebrated time hierarchy theorem for Turing machines states, informally, that more problems can be solved given more time. The extent to which a time hierarchy-type theorem holds in the classic distributed \(\mathsf{LOCAL}\) model has been open for many years. In particular, it is consistent with previous results that all natural problems in the \(\mathsf{LOCAL}\) model can be classified according to a small constant number of complexities, such as \(O(1)\), \(O(\log^\ast n)\), \(O(\log n)\), \(2^{O(\sqrt{\log n})}\), etc. In this paper we establish the first time hierarchy theorem for the \(\mathsf{LOCAL}\) model and prove that several gaps exist in the \(\mathsf{LOCAL}\) time hierarchy. Our main results are as follows: (a) We define an infinite set of simple coloring problems called hierarchical \(2\frac{1}{2}\)-coloring. A correctly colored graph can be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class of locally checkable labeling (LCL) problems. However, the complexity of the \(k\)-level hierarchical \(2\frac{1}{2}\)-coloring problem is \(\Theta(n^{1/k})\) for \(k\in\mathbb{Z}^+\). The upper and lower bounds hold for both general graphs and trees and for both randomized and deterministic algorithms. (b) Consider any LCL problem on bounded degree trees. We prove an automatic speedup theorem that states that any randomized \(n^{o(1)}\)-time algorithm solving the LCL can be transformed into a deterministic \(O(\log n)\)-time algorithm. Together with a previous result [the authors and T. Kopelowitz, “An exponential separation between randomized and deterministic complexity in the LOCAL model”, in: Proceedings of the 57th annual IEEE symposium on foundations of computer science, FOCS 2016. Los Alamitos, CA: IEEE Computer Society. 615–624 (2016; doi:10.1109/FOCS.2016.72)], this establishes that on trees, there are no natural deterministic complexities in the ranges \(\omega(\log^\ast n)\)–\(o(\log n)\) or \(\omega(\log n)\)–\(n^{o(1)}\). (c) We expose a new gap in the randomized time hierarchy on general graphs. Roughly speaking, any randomized algorithm that solves an LCL problem in sublogarithmic time can be sped up to run in \(O(T_{LLL})\) time: the complexity of the distributed Lovász local lemma (LLL) problem. In other words, the LLL is complete for sublogarithmic time. Finally, we revisit M. Naor and L. Stockmeyer’s [SIAM J. Comput. 24, No. 6, 1259–1277 (1995; Zbl 0845.68006)] characterization of \(O(1)\)-time \(\mathsf{LOCAL}\) algorithms for LCL problems (as order-invariant w.r.t. vertex IDs) and calculate the complexity gaps that are directly implied by their proof. For \(n\)-rings we see an \(\omega(1)\)–\(o(\log^\ast n)\) complexity gap, for \((\sqrt{n}\times \sqrt{n})\)-tori an \(\omega(1)\)–\(o(\sqrt{\log^\ast n})\) gap, and for bounded degree trees and general graphs, an \(\omega(1)\)–\(o(\log(\log^\ast n))\) complexity gap.

MSC:

68Q05 Models of computation (Turing machines, etc.) (MSC2010)
05C15 Coloring of graphs and hypergraphs
60C05 Combinatorial probability
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)
68Q15 Complexity classes (hierarchies, relations among complexity classes, etc.)
68Q25 Analysis of algorithms and problem complexity
68W15 Distributed algorithms
68W20 Randomized algorithms

Citations:

Zbl 0845.68006

References:

[1] D. Achlioptas and F. Iliopoulos, {\it Random walks that find perfect objects and the Lovász local lemma}, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 494-503, . · Zbl 1426.05154
[2] A. Balliu, S. Brandt, D. Olivetti, and J. Suomela, {\it Almost global problems in the LOCAL model}, in Proceedings of the 32nd International Symposium on Distributed Computing, 2018. · Zbl 1497.68560
[3] A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D. Olivetti, and J. Suomela, {\it New classes of distributed time complexity}, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), New York, 2018, pp. 1307-1318, . · Zbl 1427.68094
[4] R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman, {\it A distributed \((2+ϵ)\)-approximation for vertex cover in \({O}(\log{Δ}/ϵ \log\log{Δ})\) rounds}, J. ACM, 64 (2017), 23. · Zbl 1426.68291
[5] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, {\it The locality of distributed symmetry breaking}, J. ACM, 63 (2016), 20. · Zbl 1426.68020
[6] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto, {\it A lower bound for the distributed Lovász local lemma}, in Proceedings of the 48th ACM Symposium on the Theory of Computing (STOC), 2016, pp. 479-488. · Zbl 1375.68191
[7] S. Brandt, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, P. R. J. Österg\aard, C. Purcell, J. Rybicki, J. Suomela, and P. Uznanski, {\it LCL problems on grids}, in Proceedings of the 36th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2017, pp. 101-110. · Zbl 1380.68218
[8] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, {\it The complexity of distributed edge coloring with small palettes}, in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018, pp. 2633-2652. · Zbl 1403.68326
[9] Y.-J. Chang, T. Kopelowitz, and S. Pettie, {\it An exponential separation between randomized and deterministic complexity in the LOCAL model}, in Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 615-624, . · Zbl 1373.68258
[10] Y.-J. Chang and S. Pettie, {\it A time hierarchy theorem for the LOCAL model}, in Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS), 2017, pp. 156-167.
[11] K.-M. Chung, S. Pettie, and H.-H. Su, {\it Distributed algorithms for the Lovász local lemma and graph coloring}, Distrib. Comput., 30 (2017), pp. 261-280. · Zbl 1419.68213
[12] R. Cole and U. Vishkin, {\it Deterministic coin tossing with applications to optimal parallel list ranking}, Inform. Control, 70 (1986), pp. 32-53. · Zbl 0612.68044
[13] L. Feuilloley and P. Fraigniaud, {\it Survey of distributed decision}, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 119 (2016), pp. 41-65. · Zbl 1409.68043
[14] M. Fischer, {\it Improved deterministic distributed matching via rounding}, in Proceedings of the 31st International Symposium on Distributed Computing (DISC), 2017, pp. 17:1-17:15. · Zbl 1515.68366
[15] M. Fischer and M. Ghaffari, {\it Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy}, in Proceedings of the 31st International Symposium on Distributed Computing (DISC), 2017, 18. · Zbl 1515.68367
[16] P. Fraigniaud, A. Korman, and D. Peleg, {\it Towards a complexity theory for local distributed computing}, J. ACM, 60 (2013), 35, . · Zbl 1281.68133
[17] M. Fürer, {\it Data structures for distributed counting}, J. Comput. System Sci., 28 (1984), pp. 231-243, . · Zbl 0541.68025
[18] M. Ghaffari, {\it An improved distributed algorithm for maximal independent set}, in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016, pp. 270-277, . · Zbl 1411.68175
[19] M. Ghaffari, D. G. Harris, and F. Kuhn, {\it On Derandomizing Local Distributed Algorithms}, in Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), 2018. · Zbl 1405.68005
[20] M. Ghaffari, F. Kuhn, and Y. Maus, {\it On the complexity of local distributed graph problems}, in Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), 2017, pp. 784-797. · Zbl 1370.68127
[21] M. Ghaffari and H.-H. Su, {\it Distributed degree splitting, edge coloring, and orientations}, in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 2505-2523, . · Zbl 1410.68297
[22] M. Göös, J. Hirvonen, and J. Suomela, {\it Linear-in-\({Δ}\) lower bounds in the LOCAL model}, Distrib. Comput., 30 (2015), pp. 325-338, . · Zbl 1423.68192
[23] M. Göös and J. Suomela, {\it Locally checkable proofs in distributed computing}, Theory Comput., 12 (2016), pp. 1-33, . · Zbl 1401.68085
[24] M. Göös and J. Suomela, {\it No sublogarithmic-time approximation scheme for bipartite vertex cover}, Distrib. Comput., 27 (2014), pp. 435-443, . · Zbl 1320.68224
[25] R. L. Graham, B. L. Rothschild, and J. H. Spencer, {\it Ramsey Theory}, 2nd ed., John Wiley and Sons, New York, 1990. · Zbl 0705.05061
[26] B. Haeupler and D. G. Harris, {\it Parallel algorithms and concentration bounds for the Lovász local lemma via witness-DAGs}, in Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 1170-1187, . · Zbl 1410.68167
[27] M. Hańćkowiak, M. Karoński, and A. Panconesi, {\it On the distributed complexity of computing maximal matchings}, SIAM J. Discrete Math., 15 (2001), pp. 41-57. · Zbl 0987.05079
[28] D. G. Harris, {\it Lopsidependency in the Moser-Tardos framework: Beyond the lopsided Lovász local lemma}, ACM Trans. Algorithms, 13 (2016), 17, . · Zbl 1446.68108
[29] D. G. Harris and A. Srinivasan, {\it A constructive algorithm for the Lovász local lemma on permutations}, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014, pp. 907-925, . · Zbl 1423.05191
[30] J. Hartmanis and R. E. Stearns, {\it On the computational complexity of algorithms}, Trans. Amer. Math. Soc., 117 (1965), pp. 285-306. · Zbl 0131.15404
[31] N. J. A. Harvey and J. Vondrák, {\it An algorithmic proof of the Lovász local lemma via resampling oracles}, in Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2015, pp. 1327-1346, .
[32] D. Hefetz, F. Kuhn, Y. Maus, and A. Steger, {\it Polynomial lower bound for distributed graph coloring in a weak LOCAL model}, in Proceedings of the 30th International Symposium on Distributed Computing (DISC), 2016, pp. 99-113, . · Zbl 1393.68184
[33] K. B. R. Kolipaka and M. Szegedy, {\it Moser and Tardos meet Lovász}, in Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), 2011, pp. 235-244, . · Zbl 1288.68129
[34] V. Kolmogorov, {\it Commutativity in the algorithmic Lovász local lemma}, in Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 780-787, .
[35] A. Korman, J.-S. Sereni, and L. Viennot, {\it Toward more localized local algorithms: removing assumptions concerning global knowledge.}, Distrib. Comput., 26 (2013), pp. 289-308. · Zbl 1284.68644
[36] F. Kuhn, T. Moscibroda, and R. Wattenhofer, {\it Local computation: Lower and upper bounds}, J. ACM, 63 (2016), 17, . · Zbl 1426.68092
[37] F. Kuhn and R. Wattenhofer, {\it On the complexity of distributed graph coloring}, in Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), 2006, pp. 7-15. · Zbl 1314.68161
[38] N. Linial, {\it Locality in distributed graph algorithms}, SIAM J. Comput., 21 (1992), pp. 193-201. · Zbl 0787.05058
[39] G. L. Miller and J. H. Reif, {\it Parallel tree contraction–Part I: Fundamentals}, Adv. Comput. Res., 5 (1989), pp. 47-72.
[40] R. A. Moser and G. Tardos, {\it A constructive proof of the general Lovász local lemma}, J. ACM, 57 (2010), 11, . · Zbl 1300.60024
[41] M. Naor, {\it A lower bound on probabilistic algorithms for distributive ring coloring}, SIAM J. Discrete Math., 4 (1991), pp. 409-412, . · Zbl 0738.68007
[42] M. Naor and L. J. Stockmeyer, {\it What can be computed locally?}, SIAM J. Comput., 24 (1995), pp. 1259-1277, . · Zbl 0845.68006
[43] D. Peleg, {\it Distributed Computing: A Locality-Sensitive Approach}, Discrete Math. Appl. 5, SIAM, Philadelphia, 2000. · Zbl 0959.68042
[44] S. Pettie and H.-H. Su, {\it Distributed algorithms for coloring triangle-free graphs}, Inform. and Comput., 243 (2015), pp. 263-280. · Zbl 1327.68330
[45] J. Suomela, {\it Survey of local algorithms}, ACM Comput. Surv., 45 (2013), 24, . · Zbl 1293.68306
[46] J. Suomela, {\it private communication}, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.