×

Gyro-elastic beams for the vibration reduction of long flexural systems. (English) Zbl 1404.74078

Summary: The paper presents a model of a chiral multi-structure incorporating gyro-elastic beams. Floquet-Bloch waves in periodic chiral systems are investigated in detail, with the emphasis on localization and the formation of standing waves. It is found that gyricity leads to low-frequency standing modes and generation of stop-bands. A design of an earthquake protection system is offered here, as an interesting application of vibration isolation. Theoretical results are accompanied by numerical simulations in the time-harmonic regime.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics

References:

[1] D’Eleuterio GMT, Hughes PC. (1984) Dynamics of gyroelastic continua. J. Appl. Mech. 51, 415-422. (doi:10.1115/1.3167634) · doi:10.1115/1.3167634
[2] Mead DJ. (1970) Free wave propagation in periodically supported, infinite beams. J. Sound Vib. 11, 181-197. (doi:10.1016/S0022-460X(70)80062-1) · doi:10.1016/S0022-460X(70)80062-1
[3] SenGupta G. (1970) Natural flexural waves and the normal modes of periodically-supported beams and plates. J. Sound Vib. 13, 89-101. (doi:10.1016/S0022-460X(70)80082-7) · doi:10.1016/S0022-460X(70)80082-7
[4] SenGupta G. (1971) Natural frequencies of periodic skin-stringer structures using a wave approach. J. Sound Vib. 16, 567-580. (doi:10.1016/0022-460X(71)90663-8) · doi:10.1016/0022-460X(71)90663-8
[5] Mead DJ. (1975) Wave propagation and natural modes in periodic systems: II. Multi-coupled systems, with and without damping. J. Sound Vib. 40, 19-39. (doi:10.1016/S0022-460X(75)80228-8) · Zbl 0313.73024 · doi:10.1016/S0022-460X(75)80228-8
[6] Mead DJ. (1996) Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995. J. Sound Vib. 190, 495-524. (doi:10.1006/jsvi.1996.0076) · doi:10.1006/jsvi.1996.0076
[7] Heckl MA. (2002) Coupled waves on a periodically supported Timoshenko beam. J. Sound Vib. 252, 849-882. (doi:10.1006/jsvi.2001.3823) · Zbl 1237.74117 · doi:10.1006/jsvi.2001.3823
[8] Romeo F, Luongo A. (2002) Invariants representation of propagation properties for bi-coupled periodic structures. J. Sound Vib. 257, 869-886. (doi:10.1006/jsvi.2002.5065) · doi:10.1006/jsvi.2002.5065
[9] Brun M, Giaccu GF, Movchan AB, Movchan NV. (2011) Asymptotics of eigenfrequencies in the dynamic response of elongated multi-structures. Proc. R. Soc. A 468, 378-394. (doi:10.1098/rspa.2011.0415) · Zbl 1364.74047 · doi:10.1098/rspa.2011.0415
[10] Carta G, Brun M, Movchan AB. (2014) Dynamic response and localization in strongly damaged waveguides. Proc. R. Soc. A 470, 20140136. (doi:10.1098/rspa.2014.0136) · doi:10.1098/rspa.2014.0136
[11] Carta G, Brun M, Movchan AB. (2014) Elastic wave propagation and stop-band generation in strongly damaged solids. Fract. Struct. Int. 29, 28-36. (doi:10.3221/IGF-ESIS.29.04) · doi:10.3221/IGF-ESIS.29.04
[12] Carta G, Brun M. (2015) Bloch-Floquet waves in flexural systems with continuous and discrete elements. Mech. Mat. 87, 11-26. (doi:10.1016/j.mechmat.2015.03.004) · doi:10.1016/j.mechmat.2015.03.004
[13] Carta G, Movchan AB, Argani LP, Bursi OS. (2016) Quasi-periodicity and multi-scale resonators for the reduction of seismic vibrations in fluid-solid systems. Int. J. Eng. Sci. 109, 216-239. (doi:10.1016/j.ijengsci.2016.09.010) · doi:10.1016/j.ijengsci.2016.09.010
[14] Carta G, Brun M, Movchan AB, Boiko T. (2016) Transmission and localisation in ordered and randomly-perturbed structured flexural systems. Int. J. Eng. Sci. 98, 126-152. (doi:10.1016/j.ijengsci.2015.09.005) · Zbl 1423.74460 · doi:10.1016/j.ijengsci.2015.09.005
[15] Jones IS, Movchan AB, Gei M. (2011) Waves and damage in structured solids with multi-scale resonators. Proc. R. Soc. A 467, 964-984. (doi:10.1098/rspa.2010.0319) · Zbl 1219.74021 · doi:10.1098/rspa.2010.0319
[16] Bigoni D, Guenneau S, Movchan AB, Brun M. (2013) Elastic metamaterials with inertial locally resonant structures: application to lensing and localization. Phys. Rev. B 87, 174303. (doi:10.1103/PhysRevB.87.174303) · doi:10.1103/PhysRevB.87.174303
[17] Tallarico D, Movchan NV, Movchan AB, Colquitt DJ. (2016) Tilted resonators in a triangular elastic lattice: Chirality, Bloch waves and negative refraction. J. Mech. Phys. Solids 103, 236-256. (doi:10.1016/j.jmps.2017.03.007) · doi:10.1016/j.jmps.2017.03.007
[18] Achaoui Y, Ungureanu B, Enoch S, Brûlé S, Guenneau S. (2016) Seismic waves damping with arrays of inertial resonators. Extr. Mech. Lett. 8, 30-37. (doi:10.1016/j.eml.2016.02.004) · doi:10.1016/j.eml.2016.02.004
[19] Colombi A, Colquitt D, Roux P, Guenneau S, Craster RV. (2016) A seismic metamaterial: the resonant metawedge. Sci. Rep. 6, 27717. (doi:10.1038/srep27717) · doi:10.1038/srep27717
[20] Meirovitch L. (1974) A new method of solution of the eigenvalue problem for gyroscopic systems. AIAA J. 12, 1337-1342. (doi:10.2514/3.49486) · Zbl 0293.70007 · doi:10.2514/3.49486
[21] Meirovitch L. (1975) A modal analysis for the response of linear gyroscopic systems. J. Appl. Mech. 42, 446-450. (doi:10.1115/1.3423597) · Zbl 0319.70003 · doi:10.1115/1.3423597
[22] Huseyin K, Plaut RH. (1974) Transverse vibrations and stability of systems with gyroscopic forces. J. Struct. Mech. 3, 163-177. (doi:10.1080/03601217408907262) · doi:10.1080/03601217408907262
[23] Huseyin K. (1976) Standard forms of the eigenvalue problems associated with gyroscopic systems. J. Sound Vib. 45, 29-37. (doi:10.1016/0022-460X(76)90665-9) · Zbl 0333.70010 · doi:10.1016/0022-460X(76)90665-9
[24] Inman DJ. (1988) A sufficient condition for the stability of conservative gyroscopic systems. J. Appl. Mech. 55, 895-898. (doi:10.1115/1.3173738) · Zbl 0676.70004 · doi:10.1115/1.3173738
[25] Huseyin K. (1991) On the stability criteria for conservative gyroscopic systems. J. Vib. Acoust. 113, 58-61. (doi:10.1115/1.2930155) · doi:10.1115/1.2930155
[26] Thomson W. (1894) The molecular tactics of a crystal. Oxford, UK: Clarendon Press.
[27] Brun M, Jones IS, Movchan AB. (2012) Vortex-type elastic structured media and dynamic shielding. Proc. R. Soc. A 468, 3027-3046. (doi:10.1098/rspa.2012.0165) · Zbl 1371.74154 · doi:10.1098/rspa.2012.0165
[28] Carta G, Brun M, Movchan AB, Movchan NV, Jones IS. (2014) Dispersion properties of vortex-type monatomic lattices. Int. J. Solids Struct. 51, 2213-2225. (doi:10.1016/j.ijsolstr.2014.02.026) · doi:10.1016/j.ijsolstr.2014.02.026
[29] Wang P, Lu L, Bertoldi K. (2015) Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302. (doi:10.1103/PhysRevLett.115.104302) · doi:10.1103/PhysRevLett.115.104302
[30] Nash LM, Kleckner D, Read A, Vitelli V, Turner AM, Irvine WTM. (2015) Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14 495-14 500. (doi:10.1073/pnas.1507413112) · doi:10.1073/pnas.1507413112
[31] Carta G, Jones IS, Movchan NV, Movchan AB, Nieves MJ. (2017) ‘Deflecting elastic prism’ and unidirectional localisation for waves in chiral elastic systems. Sci. Rep. 7, 26. (doi:10.1038/s41598-017-00054-6) · doi:10.1038/s41598-017-00054-6
[32] Hughes PC, D’Eleuterio GMT. (1986) Modal parameter analysis of gyroelastic continua. J. Appl. Mech. 53, 918-924. (doi:10.1115/1.3171881) · Zbl 0608.73064 · doi:10.1115/1.3171881
[33] D’Eleuterio GMT. (1988) On the theory of gyroelasticity. J. Appl. Mech. 55, 488-489. (doi:10.1115/1.3173705) · doi:10.1115/1.3173705
[34] Yamanaka K, Heppler GR, Huseyin K. (1996) Stability of gyroelastic beams. AIAA J. 34, 1270-1278. (doi:10.2514/3.13223) · Zbl 0894.73043 · doi:10.2514/3.13223
[35] Graff KF. (1991) Wave motion in elastic solids. New York, NY: Dover.
[36] Brun M, Guenneau S, Movchan AB, Bigoni D. (2010) Dynamics of structural interfaces: filtering and focussing effects for elastic waves. J. Mech. Phys. Solids 58, 1212-1224. (doi:10.1016/j.jmps.2010.06.008) · Zbl 1429.74017 · doi:10.1016/j.jmps.2010.06.008
[37] Carta G, Jones IS, Brun M, Movchan NV, Movchan AB. (2013) Crack propagation induced by thermal shocks in structured media. Int. J. Solids Struct. 50, 2725-2736. (doi:10.1016/j.ijsolstr.2013.05.001) · doi:10.1016/j.ijsolstr.2013.05.001
[38] Morvaridi M, Brun M. (2016) Perfectly matched layers for flexural waves: an exact analytical model. Int. J. Solids Struct. 102-103, 1-9. (doi:10.1016/j.ijsolstr.2016.10.024) · doi:10.1016/j.ijsolstr.2016.10.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.