×

On the critical exponent for nonlinear Schrödinger equations without gauge invariance in exterior domains. (English) Zbl 1404.35417

Summary: We obtain the critical exponent for the Dirichlet exterior problem \[ \begin{aligned} i u_t + \Delta u & = \lambda | u |^p, \text{ in } (0, \infty) \times D^c, \\ u(t, x) & = f(x), \text{ in } (0, \infty) \times \partial D, \\ u(0, x) & = g(x), \text{ in } D^c, \end{aligned} \] where \(u\) is a complex valued function, \(D = \overline{B(0, 1)}\) is the closed unit ball in \(\mathbb{R}^N\), \(N \geq 3\), \(D^c\) is its complement, \(p > 1\), \(\lambda \in \mathbb{C} \backslash \{0 \}\), \(f \not\equiv 0\), \(f \in L^1(\partial D; \mathbb{C})\) and \(g \in L_{loc}^1(\overline{D^c}; \mathbb{C})\). More precisely, we show that cm
\(\bullet\)
If \(1 < p < p^\ast : = \frac{N}{N - 2}\) and \[ \operatorname{Re} \lambda \cdot \operatorname{Im} \mathop{\int}\limits_{D^c} g(x) h(x) d x < 0 \text{ and } \operatorname{Re} \lambda \cdot \operatorname{Re} \mathop{\int}\limits_{\partial D} f(x) d S_x < 0 \] or \[ \operatorname{Im} \lambda \cdot \operatorname{Re} \mathop{\int}\limits_{D^c} g(x) h(x) d x > 0 \text{ and } \operatorname{Im} \lambda \cdot \operatorname{Im} \mathop{\int}\limits_{\partial D} f(x) d S_x < 0, \] where \(h\) is a certain harmonic function, then the considered problem possesses no global weak solution.
\(\bullet\)
If \(p > p^\ast\), then the problem admits global solutions for some \(\lambda\), \(f\) and \(g\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B33 Critical exponents in context of PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Bandle, C.; Levine, H. A., On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 655, 595-624, (1989) · Zbl 0693.35081
[2] Fino, A. Z.; Dannawi, I.; Kirane, M., Blow-up of solutions for semilinear fractional Schrödinger equations, J. Integral Equations Appl., 30, 1, 67-80, (2018) · Zbl 1393.35220
[3] Ikeda, M.; Inui, T., Small data blow-up of \(L^2\) or \(H^1\)-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Equ., 15, 3, 1-11, (2015)
[4] Ikeda, M.; Wakasugi, Y., Small data blow-up of \(L^2\)-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations, 26, 1275-1285, (2013) · Zbl 1313.35324
[5] Kirane, M.; Laskri, Y.; Tatar, N. E., Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl., 312, 488-501, (2005) · Zbl 1135.35350
[6] Kirane, M.; Nabti, A., Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation, Z. Angew. Math. Phys., 66, 4, 1473-1482, (2015) · Zbl 1322.35127
[7] Zhang, Qi S., A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. Roy. Soc. Edinburgh Sect. A, 131, 2, 451-475, (2001) · Zbl 0979.35021
[8] Zhang, Q.; Sun, H. R.; Li, Y., The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance, Appl. Math. Lett., 64, 119-124, (2017) · Zbl 1349.35415
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.