×

Optimal partitions for Robin Laplacian eigenvalues. (English) Zbl 1403.49046

In this very interesting paper the authors prove existence of an optimal partition for the multiphase shape optimization problem which consists of minimizing the sum of the first Robin Laplacian eigenvalue of \(k\) mutually disjoint open sets which have a \(\mathcal{H}^{d-1}\)-countably rectifiable boundary and are contained in a given set \(D\) in \(\mathbb{R}^d\). More specifically, given a open bounded set \(D\subset\mathbb{R}^d\) with Lipschitz boundary, one considers the problem of minimizing \[ \inf\left\{\sum_{i=1}^k\lambda_1(\Omega_i,\beta) \;: \;(\Omega_1,\ldots,\Omega_k)\in \mathcal{A}(D)\right\}, \] where \(\mathcal{A}(D)\) is a class of \(k\)-tuples of open domains contained in \(D\) described below, and \(\lambda_1(\Omega,\beta)\) is the first Robin Laplacian eigenvalue, for a fixed parameter \(\beta>0\). When \(\Omega\) is sufficiently smooth, \[ \lambda_1(\Omega,\beta)=\inf_{u\in H^1(\Omega)\setminus \{0\}}\frac{\int_{\Omega}|\nabla u|^2dx+\beta\int_{\partial\Omega}u^2d\mathcal{H}^{d-1}}{\int_{\Omega}u^2dx}. \] The authors prove existence of optimal partitions in the class \[ \begin{aligned} \mathcal{A}(D)=\Big\{&(\Omega_1,\ldots,\Omega_k)\;: \;\Omega_i\subset D, \Omega_i\cap\Omega_j=\emptyset \text{ for } i\neq j, \Omega \text{ is open, } \partial\Omega_i \text{ is }\\ &\mathcal{H}^{d-1}-\text{countably rectifiable with } \mathcal{H}^{d-1}(\partial\Omega_i)<\infty\Big\}. \end{aligned} \] Even though the sets \(\Omega_i\) need not be Lipschitz, the definition of first Robin eigenvalue can be extended in this setting. The main result of this paper proves existence of a solution for the optimal partition problem above for the generalized first Robin eigenvalue, in the class \(\mathcal{A}(D)\).
The main ingredient of the proof is a relaxed formulation of the problem, which is a minimization on functions rather than sets, where the space of special functions of bounded variation, \(SBV(\mathbb{R}^d)\), is crucial. The authors consider \[ \begin{aligned} \mathcal{F}(D)=\Big\{(u_1,\ldots,u_k)& \in (SBV^{1/2}(\mathbb{R}^d))^k \;: \;\text{supp}(u_i)\subset\overline{D}, u_i\geq 0, \\ &u_i\cdot u_j=0 \text{ in } D\Big\}, \end{aligned} \] where \(SBV^{1/2}(\mathbb{R}^d)\) is the space of nonnegative functions \(u\in L^2(\mathbb{R}^d)\) with \(u^2\in SBV(\mathbb{R}^d)\). Denoting with \(J_{u_i}\) the jump set of \(u_i\), the relaxed problem considered is the minimization of \[ \sum_{i=1}^k \frac{\int_{\mathbb{R}^d}|\nabla u_i|^2dx+\beta\int_{J_{u_i}}((u_i^+)^2+(u_i^-)^2)d\mathcal{H}^{d-1}}{\int_{\mathbb{R}^d}u_i^2dx}, \] for \((u_1,\ldots,u_k)\in\mathcal{F}(D)\).
The authors first prove existence of a solution of the relaxed problem, which follows from the compactness and lower semicontinuity in \(SBV^{1/2}(\mathbb{R}^d)\). Next, they are able to prove upper and lower bounds on the supports of \(u_i\), which lead to the proof that \(\mathcal{H}^{d-1}(J_{u_i})<\infty\) and \(u_i\in SBV(\mathbb{R}^d)\). The crucial step in the proof of their main result is the proof that the jump sets \(J_{u_i}\) are essentially closed in \(D\). The key ingredients in this part are a uniform density estimate from below for the supports of \(u_i\) (obtained by applying the Faber-Krahn inequality for the first Robin Laplacian eigenvalue), the local isoperimetric inequality, and the fact that \(u_i\) is an almost-quasi minimizer for the Mumford-Shah functional “well inside” its support. Finally, the authors are able to prove that if \(\Omega_i\) is the connected component of \(\mathbb{R}^d\setminus\overline{J_{u_i}}\) where \(u_i\) does not vanish, then \((\Omega_1,\ldots,\Omega_k)\in \mathcal{A}(D)\) and solve the main problem.

MSC:

49R05 Variational methods for eigenvalues of operators
49Q10 Optimization of shapes other than minimal surfaces
49K40 Sensitivity, stability, well-posedness
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35R35 Free boundary problems for PDEs

References:

[1] Alt, HW; Caffarelli, LA, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 105-144, (1981) · Zbl 0449.35105
[2] Ambrosio, L., Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal., 111, 291-322, (1990) · Zbl 0711.49064 · doi:10.1007/BF00376024
[3] Ambrosio, N., Fusco, L., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000) · Zbl 0957.49001
[4] Bogosel, B.; Velichkov, B., A multiphase shape optimization problem for eigenvalues: qualitative study and numerical results, SIAM J. Numer. Anal., 54, 210-241, (2016) · Zbl 1334.49128 · doi:10.1137/140976406
[5] Bonnaillie-Noël, V.; Helffer, B.; Vial, G., Numerical simulations for nodal domains and spectral minimal partitions, ESAIM Control Optim. Calc. Var., 16, 221-246, (2010) · Zbl 1247.35181 · doi:10.1051/cocv:2008074
[6] Bucur, D.; Buttazzo, G.; Henrot, A., Existence results for some optimal partition problems, Adv. Math. Sci. Appl., 8, 571-579, (1998) · Zbl 0915.49006
[7] Bucur, D., Fragalà, I.: On the honeycomb conjecture for Robin Laplacian eigenvalues. ArXiv e-prints (2017)
[8] Bucur, D., Fragalà, I.: Proof of the honeycomb asymptotics for optimal Cheeger clusters. ArXiv e-prints (2017)
[9] Bucur, Dorin; Fragalà, Ilaria; Velichkov, Bozhidar; Verzini, Gianmaria, On the honeycomb conjecture for a class of minimal convex partitions, Transactions of the American Mathematical Society, 370, 7149-7179, (2018) · Zbl 1396.52024 · doi:10.1090/tran/7326
[10] Bucur, D.; Giacomini, A., A variational approach to the isoperimetric inequality for the Robin eigenvalue problem, Arch. Ration. Mech. Anal., 198, 927-961, (2010) · Zbl 1228.49049 · doi:10.1007/s00205-010-0298-6
[11] Bucur, D.; Giacomini, A., Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach, Arch. Ration. Mech. Anal., 218, 757-824, (2015) · Zbl 1458.35286 · doi:10.1007/s00205-015-0872-z
[12] Bucur, D.; Giacomini, A., Shape optimization problems with Robin conditions on the free boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 1539-1568, (2016) · Zbl 1352.49045 · doi:10.1016/j.anihpc.2015.07.001
[13] Bucur, D.; Luckhaus, S., Monotonicity formula and regularity for general free discontinuity problems, Arch. Ration. Mech. Anal., 211, 489-511, (2014) · Zbl 1283.49056 · doi:10.1007/s00205-013-0671-3
[14] Bucur, D.; Velichkov, B., Multiphase shape optimization problems, SIAM J. Control Optim., 52, 3556-3591, (2014) · Zbl 1312.49050 · doi:10.1137/130917272
[15] Caffarelli, LA; Lin, FH, An optimal partition problem for eigenvalues, J. Sci. Comput., 31, 5-18, (2007) · Zbl 1123.65060 · doi:10.1007/s10915-006-9114-8
[16] Caffarelli, LA; Kriventsov, D., A free boundary problem related to thermal insulation, Commun. Partial Differ. Equ., 41, 1149-1182, (2016) · Zbl 1351.35268 · doi:10.1080/03605302.2016.1199038
[17] Conti, M.; Terracini, S.; Verzini, G., An optimal partition problem related to nonlinear eigenvalues, J. Funct. Anal., 198, 160-196, (2003) · Zbl 1091.35051 · doi:10.1016/S0022-1236(02)00105-2
[18] Conti, M.; Terracini, S.; Verzini, G., On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae, Calc. Var. Partial Differ. Equ., 22, 45-72, (2005) · Zbl 1132.35365 · doi:10.1007/s00526-004-0266-9
[19] Conti, M.; Terracini, S.; Verzini, G., A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54, 779-815, (2005) · Zbl 1132.35397 · doi:10.1512/iumj.2005.54.2506
[20] De Giorgi, E., Ambrosio, L.: New functionals in the calculus of variations. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 2, 199-210 (1989) · Zbl 0715.49014
[21] Giorgi, E.; Carriero, M.; Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., 108, 195-218, (1989) · Zbl 0682.49002 · doi:10.1007/BF01052971
[22] Helffer, B.: Domaines nodaux et partitions spectrales minimales (d’après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini), Séminaire: Équations aux Dérivées Partielles. 2006-2007, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, pp. Exp. No. VIII, 23 (2007) · Zbl 1216.35020
[23] Helffer, B., On spectral minimal partitions: a survey, Milan J. Math., 78, 575-590, (2010) · Zbl 1225.35158 · doi:10.1007/s00032-010-0129-0
[24] Helffer, B.; Hoffmann-Ostenhof, T.; Terracini, S., Nodal domains and spectral minimal partitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 101-138, (2009) · Zbl 1171.35083 · doi:10.1016/j.anihpc.2007.07.004
[25] Kriventsov, D.: A free boundary problem related to thermal insulation: flat implies smooth. ArXiv e-prints (2015)
[26] Leonardi, GP; Pratelli, A. (ed.); Leugering, G. (ed.), An overview on the Cheeger problem, No. 166, 117-139, (2016), Bern · Zbl 1329.49088 · doi:10.1007/978-3-319-17563-8_6
[27] Ramos, M.; Tavares, H.; Terracini, S., Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues, Arch. Ration. Mech. Anal., 220, 363-443, (2016) · Zbl 1336.49054 · doi:10.1007/s00205-015-0934-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.